已知(3x-1)7=a^x7+a^x6+…+a1x+a0,則a1+a3+…+a7=
8256
8256
分析:題干錯誤:(3x-1)7=a^x7+a^x6+…+a1x+a0,應(yīng)該是:(3x-1)7=a7x7+a6x6+…+a1x1+a0,

在所給的等式中,分別令x=1,x=-1,得到兩個式子,由這2個式子即可求得a1+a3+…+a7 的值.
解答:解:在等式(3x-1)7=a7x7+a6x6+…+a1x1+a0  中,令x=1可得 a0+a1+a2+a3+…+a7=27
再令x=-1可得 a0-a1+a2-a3+…-a7=(-4)7,
則由以上可得 a1+a3+…+a7=
27-(-4)7
2
=8256,
故答案為 8256.
點評:本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(3x-1)7=a7x7+a6x6+…+a1x+a0
求 (1)a1+a2+…+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6
(4)|a0|+|a1|+|a2|+…+|a7|.(要求算出最終結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•甘肅模擬)已知(3x-1)7=a7x7+a6x6+…+a1x+a0則a0+a1+a2+…+a7=
128
128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知(3x-1)7=a7x7+a6x6+…+a1x+a0
求 (1)a1+a2+…+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6
(4)|a0|+|a1|+|a2|+…+|a7|.(要求算出最終結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知(3x-1)7=a7x7+a6x6+…+a1x+a0
求 (1)a1+a2+…+a7;
(2)a1+a3+a5+a7
(3)a0+a2+a4+a6
(4)|a0|+|a1|+|a2|+…+|a7|.(要求算出最終結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案