精英家教網 > 高中數學 > 題目詳情
設實數x,y滿足條件
x≥0
x≤y
x+2y-4≤0
,則z=2x+y的最大值是
 
分析:先根據約束條件畫出可行域,設z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內的點B時,從而得到z值即可.
解答:精英家教網解:先根據約束條件畫出可行域,設z=2x+y,
將最大值轉化為y軸上的截距,
當直線z=2x+y經過點B(
4
3
,
4
3
)時,z最大,
數形結合,將點B的坐標代入z=2x+y得
z最大值為:4,
故答案為:4.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉化思想和數形結合的思想,屬中檔題.目標函數有唯一最優(yōu)解是最常見的問題,這類問題一般要分三步:畫出可行域、求出關鍵點、定出最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設實數x、y滿足條件
x+y≤3
y≤x-1
y≥0
,則
y
x
的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設實數x,y滿足條件
1≤lg(xy2)≤2
-1≤lg
x2
y
≤2
,則lg
x3
y4
的取值范圍為
[-4,3]
[-4,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•閘北區(qū)二模)設實數x,y滿足條件
x≥0
x≤y
x+2y≤3
則z=2x-y的最大值是
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

設實數x,y滿足條件
3x+y-5≤0
x+2y-5≤0
x≥0,y≥0
,若目標函數z=ax+y僅在點P(1,2)處取得最大值,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案