【題目】畫糖人是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù).某糖人師傅在公園內(nèi)畫糖人,每天賣出某種糖人的個(gè)數(shù)與價(jià)格相關(guān),其相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:

每個(gè)糖人的價(jià)格(元)

9

10

11

12

13

賣出糖人的個(gè)數(shù)(個(gè))

54

50

46

43

39

(1)根據(jù)表中數(shù)據(jù)求關(guān)于的回歸直線方程;

(2)若該種造型的糖人的成本為2元/個(gè),為使糖人師傅每天獲得最大利潤(rùn),則該種糖人應(yīng)定價(jià)多少元?(精確到1元)

參考公式:回歸直線方程,其中,.

【答案】(1)(2)13

【解析】

(1)根據(jù)公式得到平均數(shù),以及,,可得到方程;(2)根據(jù)題意得到師傅每天獲得的利潤(rùn)為元,則,根據(jù)二次函數(shù)的性質(zhì)得到獲得最大利潤(rùn)時(shí)的定價(jià).

(1),,

,則,

關(guān)于的回歸直線方程為.

(2)設(shè)糖人師傅每天獲得的利潤(rùn)為元,則,

∴當(dāng)時(shí),糖人師傅每天獲得最大利潤(rùn).

故為使糖人師傅每天獲得最大利潤(rùn),每個(gè)糖人應(yīng)定價(jià)13元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=-x2+ef′(x

(Ⅰ)求fx)的單調(diào)區(qū)間;

(Ⅱ)若存在x1,x2x1x2),使得fx1+fx2=1,求證:x1+x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某種細(xì)菌的繁殖個(gè)數(shù)y隨天數(shù)x的變化情況,收集數(shù)據(jù)如下:

天數(shù)x

1

2

3

4

5

6

繁殖個(gè)數(shù)y

6

12

25

49

95

190

1)根據(jù)散點(diǎn)圖,判斷哪一個(gè)適合作為y關(guān)于x的回歸方程類型;(給出判斷即可,不用說(shuō)明理由)

2)根據(jù)(1)中的判斷及表中數(shù)據(jù),求y關(guān)于x的回歸方程參考數(shù)據(jù):,,,

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出停課不停學(xué)的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:

分?jǐn)?shù)不少于120

分?jǐn)?shù)不足120

合計(jì)

線上學(xué)習(xí)時(shí)間不少于5小時(shí)

4

19

線上學(xué)習(xí)時(shí)間不足5小時(shí)

合計(jì)

45

1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān);

2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于5小時(shí)和線上學(xué)習(xí)時(shí)間不足5小時(shí)的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓周上有七個(gè)不同的點(diǎn),以其中任意一點(diǎn)為始點(diǎn),另一點(diǎn)為終點(diǎn)作向量,作出所有的向量(對(duì)于點(diǎn),若作出向量,則不再作向量).若其中某四點(diǎn)所確定的凸四邊形的四條邊是首尾相接的四個(gè)向量,則稱其為“零四邊形”.試求以這七個(gè)點(diǎn)中四個(gè)點(diǎn)為頂點(diǎn)的凸四邊形中,零四邊形個(gè)數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:

①在區(qū)間內(nèi)單調(diào)遞增;

②在區(qū)間內(nèi)單調(diào)遞減;

③在區(qū)間內(nèi)單調(diào)遞增;

是極小值點(diǎn);

是極大值點(diǎn).

其中正確的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是

A. B. , C. , D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知fx)=3x22x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)yfx)的圖象上.

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m

查看答案和解析>>

同步練習(xí)冊(cè)答案