已知函數(shù)f(x)是在(0,+∞)上每一點處可導(dǎo)的函數(shù),若xf′(x)>f(x)在x>0上恒成立.
求證:函數(shù)g(x)=
當x1>0,x2>0時,證明:f(x1)+f(x2)<f(x1+x2).
已知不等式ln(1+x)<x在x>-1且x≠0時恒成立,求證:
…+N+).
(1)證明:由g(x)=′(x)= 由xf′(x)>f(x)可知:g′(x)>0在x>0上恒成立. 從而g(x)= (2)由(1)知g(x)= 在x1>0,x2>0時, 于是f(x1)< 兩式相加得到:f(x1)+f(x2)<f(x1+x2) 由(2)中可知:g(x)=
由數(shù)學歸納法可知:xi>0(i=1,2,3,…,n)時, 有f(x1)+f(x2)+f(x3)+…+f(xn)<f(x1+x2+x3+…+xn)(n≥2)恒成立. 設(shè)f(x)=xlnx,則在xi>0(i=1,2,3,…,n)時 有x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+…+xn)(n≥2)…(*)恒成立. 令xn=…+xn=…+ 由Sn<…+ Sn>…+ (x1+x2+…+xn)ln(x1+x2+…+xn)<(x1+x2+…+xn)ln(1-…+xn)(∵ln(1+x)<x) 。迹(**) 由(**)代入(*)中,可知: …+ 于是:…+ |
科目:高中數(shù)學 來源: 題型:
(1)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(2)求證:當x1>0,x2>0時,有f(x1+x2)>f(x1)+f(x2);
(3)已知不等式ln(1+x)<x在x>-1且x≠0時恒成立,求證:ln22+ln32+ln42+…+)2ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當x1>0,x2>0時,有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時恒成立,求證:ln22+ln32+ln42+…+ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當x1>0,x2>0時,有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)求證:ln22+ln32+ln42+…+ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(Ⅰ)求證:函數(shù)g(x)=在(0,+∞)上是增函數(shù);
(Ⅱ)求證:當x1>0,x2>0時,有f(x1+x2)>f(x1)+f(x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時恒成立,求證:ln22+ln32+ln42+…+ln(n+1)2>(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求證:函數(shù)g(x)=在(0,+∞)上單調(diào)遞增;
(2)求證:當x1>0,x2>0時,f(x1+x2)>f(x1)+f(x2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com