4.執(zhí)行如圖的程序框圖,若輸出的$S=\frac{31}{32}$,則輸入的整數(shù)p的值為( 。
A.6B.5C.4D.3

分析 分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算滿足S=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{P}}$=$\frac{31}{32}$的整數(shù)p的值,并輸出,結(jié)合等比數(shù)列通項(xiàng)公式,可得答案.

解答 解:由程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:
該程序的作用是利用循環(huán)計(jì)算滿足S=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{P}}$=$\frac{31}{32}$的整數(shù)p的值,
∵$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{P}}$=1-$\frac{1}{{2}^{P}}$=$\frac{31}{32}$,
故$\frac{1}{{2}^{P}}$=$\frac{1}{32}$=$\frac{1}{{2}^{5}}$,
故p=5.
故選:B.

點(diǎn)評(píng) 根據(jù)流程圖(或偽代碼)寫(xiě)程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類(lèi)型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若f(x)=ex,則$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.eB.2eC.-eD.$\frac{1}{2}e$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2+1
(1)求f(a)-f(a+1)
(2)若f(x)=x+3,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{lnx}{x}-\frac{k}{x}$(k∈R).
(1)若函數(shù)f(x)的最大值為h(k),k≠1,試比較h(k)與$\frac{1}{{{e^{2k}}}}$的大;
(2)若不等式${x^2}f(x)+\frac{1}{x+1}≥0$與$k≥-x+4\sqrt{x}-\frac{15}{4}$在[1,+∞)上均恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a=log${\;}_{\frac{2}{3}}$$\frac{3}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,d=3${\;}^{\frac{1}{2}}$,則這四個(gè)數(shù)的大小關(guān)系是(  )
A.a<b<c<dB.a<c<d<bC.b<a<c<dD.b<a<d<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)在區(qū)間(-∞,0)上是增函數(shù)的是( 。
A.y=-$\frac{1}{x}$B.y=2x2-x-1C.y=|x|D.y=-2x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow m=(1\;,\;\;1)$,向量$\overrightarrow n$與向量$\overrightarrow m$夾角為$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$.
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow n$與向量$\overrightarrow q=(1\;,\;\;0)$的夾角為$\frac{π}{2}$,向量$\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2})$,其中A、C為△ABC的內(nèi)角,且2B=A+C.求$|\overrightarrow n+\overrightarrow p|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ax2-x+2,
(1)當(dāng)a=1時(shí),當(dāng)x∈[1,+∞)時(shí),求函數(shù)$\frac{f(x)}{x}$的最小值;
(2)解關(guān)于x的不等式f(x)-2ax≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=(2a-1)x(x∈N+)是減函數(shù),則a的取值范圍是( 。
A.a>1B.a<$\frac{1}{2}$C.$\frac{1}{2}$<a<1D.$\frac{1}{2}$≤a<1

查看答案和解析>>

同步練習(xí)冊(cè)答案