設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(diǎn)(0,2a+3),且在點(diǎn)(-1,f(-1))
處的切線垂直于y軸.
(Ⅰ)用a分別表示b和c;
(Ⅱ)當(dāng)bc取得最小值時(shí),求函數(shù)g(x)=-f(x)e-x的單調(diào)區(qū)間.
【答案】分析:(Ⅰ)把(0,2a+3)代入到f(x)的解析式中得到c與a的解析式,解出c;求出f'(x),因?yàn)樵邳c(diǎn)(-1,f(-1))處的切線垂直于y軸,得到切線的斜率為0,即f′(-1)=0,代入導(dǎo)函數(shù)得到b與a的關(guān)系式,解出b即可.
(Ⅱ)把第一問中的b與c代入bc中化簡可得bc是關(guān)于a的二次函數(shù),根據(jù)二次函數(shù)求最值的方法求出bc的最小值并求出此時(shí)的a、b和c的值,代入f(x)中得到函數(shù)的解析式,根據(jù)求導(dǎo)法則求出g(x)的導(dǎo)函數(shù),將f′(x)和f(x)代入即可得到g′(x),然后令g′(x)=0求出x的值,利用x的值分區(qū)間討論g′(x)的正負(fù)即可得到g(x)的增減區(qū)間.
解答:解:(Ⅰ)由f(x)=ax2+bx+c得到f'(x)=2ax+b.
因?yàn)榍y=f(x)通過點(diǎn)(0,2a+3),故f(0)=c=2a+3,
又曲線y=f(x)在(-1,f(-1))處的切線垂直于y軸,故f'(-1)=0,
即-2a+b=0,因此b=2a.
(Ⅱ)由(Ⅰ)得,
故當(dāng)時(shí),bc取得最小值-
此時(shí)有
從而,g(x)=-f(x)e-x=(x2+x-)e-x,
所以
令g'(x)=0,解得x1=-2,x2=2.
當(dāng)x∈(-∞,-2)時(shí),g'(x)<0,故g(x)在x∈(-∞,-2)上為減函數(shù);
當(dāng)x∈(-2,2)時(shí),g'(x)>0,故g(x)在x∈(2,+∞)上為減函數(shù).
當(dāng)x∈(2,+∞)時(shí),g'(x)<0,故g(x)在x∈(2,+∞)上為減函數(shù).
由此可見,函數(shù)g(x)的單調(diào)遞減區(qū)間為(-∞,-2)和(2,+∞);單調(diào)遞增區(qū)間為(-2,2).
點(diǎn)評:本題是一道綜合題,要求學(xué)生會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程.做題時(shí)注意復(fù)合函數(shù)的求導(dǎo)法則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個(gè)數(shù)中任取一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取一個(gè)數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過點(diǎn)(1,7),又其反函數(shù)的圖象經(jīng)過點(diǎn)(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項(xiàng)是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊答案