【題目】如圖,四邊形中,,,將四邊形沿對(duì)角線折成四面.使平面平面,則下列結(jié)論正確的是( ).

A. B.

C. 與平面所成的角為 D. 四面體的體積為

【答案】A

【解析】

根據(jù)題意,依次分析命題:對(duì)于A可利用反證法說明真假;對(duì)于BBA'D為等腰Rt,CD⊥平面A'BD,得BA'⊥平面A'CD,根據(jù)線面垂直可知∠BA′C=90°;對(duì)于CCA'與平面A'BD所成的角為∠CA'D=45°C的真假;,對(duì)于D利用等體積法求出所求體積進(jìn)行判定即可,綜合可得答案.

由題設(shè)知:△BA'D為等腰Rt,CD⊥平面A'BD,得BA'⊥平面A'CD,故A正確;

B成立可得BDA'D,產(chǎn)生矛盾,故B不正確;

CA'與平面A'BD所成的角為∠CA'D=45°C不正確;

VA′﹣BCD=VC﹣A′BD=,D不正確.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:

①-2是函數(shù)的極值點(diǎn);

②1是函數(shù)的極值點(diǎn);

的圖象在處切線的斜率小于零;

④函數(shù)在區(qū)間上單調(diào)遞增.

則正確命題的序號(hào)是( )

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)上的奇函數(shù),且當(dāng)時(shí),,.

1)若,求的解析式;

2)若,不等式恒成立,求實(shí)數(shù)的取值范圍;

3)若的值域?yàn)?/span>,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2002年北京國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo),是以中國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)而設(shè)計(jì)的,弦圖用四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足(
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=lnx+
(1)函數(shù)g(x)=h(2x+m),若x=1是g(x)的極值點(diǎn),求m的值并討論g(x)的單調(diào)性;
(2)函數(shù)φ(x)=h(x)﹣ +ax2﹣2x有兩個(gè)不同的極值點(diǎn),其極小值為M,試比較2M與﹣3的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2an﹣2n+1 , 若不等式2n2﹣n﹣3<(5﹣λ)an對(duì)n∈N*恒成立,則整數(shù)λ的最大值為(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案