考點(diǎn):數(shù)列與不等式的綜合
專題:計(jì)算題,證明題,等差數(shù)列與等比數(shù)列,不等式
分析:(1)①當(dāng)n=1時(shí),a
1=2a
1-1,解得a
1=1;
②當(dāng)n≥2時(shí),a
n=S
n-S
n-1,化簡(jiǎn)可得a
n+
(-1)
n=2(a
n-1+
(-1)
n-1),則可得{a
n+
(-1)
n}是以
為首項(xiàng),2為公比的等比數(shù)列,從而求數(shù)列{a
n}的通項(xiàng)公式;
(2)設(shè)m=4n,n∈N
*,
=
=
=
(
-
);利用放縮法可得
+
+…+
=
(
-
)+
(
-)+
(
-
)
<
(
-
)+
(
-)+
(
-
),從而證明
+
+…+
<
.
解答:
解:(1)由題意,
①當(dāng)n=1時(shí),a
1=2a
1-1,
解得a
1=1;
②當(dāng)n≥2時(shí),a
n=S
n-S
n-1=(2a
n+(-1)
n)-(2a
n-1+(-1)
n-1)
=2a
n-2a
n-1+2(-1)
n,
∴a
n=2a
n-1-2(-1)
n,
設(shè)a
n+a(-1)
n=2(a
n-1+a(-1)
n-1),
則2a(-1)
n-1-a(-1)
n=-2(-1)
n,
解得,a=
,
則a
n=2a
n-1-2(-1)
n可化為a
n+
(-1)
n=2(a
n-1+
(-1)
n-1),
又∵a
1+
(-1)=1-
=
,
故{a
n+
(-1)
n}是以
為首項(xiàng),2為公比的等比數(shù)列,
則a
n=
•2
n-1-
(-1)
n,對(duì)a
1=1也成立;
故a
n=
•2
n-1-
(-1)
n.
(2)證明:設(shè)m=4n,n∈N
*,
=
=
=
(
-
);
則
+
+…+
=
(
-
)+
(
-)+
(
-
)
<
(
-
)+
(
-)+
(
-
)
=
-
•
<
<
.
點(diǎn)評(píng):本題考查了數(shù)列的通項(xiàng)公式的求法,構(gòu)造一個(gè)新數(shù)列的方法,同時(shí)考查了放縮法證明不等式,屬于難題.