(本小題12分)如圖,四棱錐中,
側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(1)求與底面所成角的大;
(2)求證:平面;
(3)求二面角的余弦值.
(1)取DC的中點(diǎn)O,由ΔPDC是正三角形,有PO⊥DC.
又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.
連結(jié)OA,則OA是PA在底面上的射影.∴∠PAO就是PA與底面所成角.
∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,從而求得OA=OP=.
∴∠PAO=45°.∴PA與底面ABCD可成角的大小為45°.
(2)由底面ABCD為菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.
建立空間直角坐標(biāo)系如圖,則, .
由M為PB中點(diǎn),∴.
∴.
∴,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.
(3).令平面BMC的法向量,
則,從而x+z=0; ……①, ,從而. ……②
由①、②,取x=−1,則. ∴可取.
由(2)知平面CDM的法向量可取,
∴. ∴所求二面角的余弦值為-.
法二:(1)方法同上
(2)取的中點(diǎn),連接,由(Ⅰ)知,在菱形中,由于,則,又,則,即,
又在中,中位線(xiàn),,則,則四邊形為,所以,在中,,則,故而,
則
(3)由(2)知,則為二面角的平面角,在中,易得,,
故,所求二面角的余弦值為
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測(cè)考試數(shù)學(xué)理卷 題型:解答題
(本小題12分)
如圖3,已知在側(cè)棱垂直于底面
的三棱柱中,AC=BC, AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若AC1與平面A1ABB1所成角的正弦值
為,求二面角D- AC1-A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆海南省高一上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)三數(shù)學(xué) 題型:解答題
(本小題12分)如圖,四棱錐中,底面是正方形,, 底面, 分別在上,且
(1)求證:平面∥平面.
(2)求直線(xiàn)與平面面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年海南省高二下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)文卷(一) 題型:解答題
(本小題12分)
如圖:⊙O為△ABC的外接圓,AB=AC,過(guò)點(diǎn)A的直線(xiàn)交⊙O于D,交BC延長(zhǎng)線(xiàn)于F,DE是BD的延長(zhǎng)線(xiàn),連接CD。
① 求證:∠EDF=∠CDF;
②求證:AB2=AF·AD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010集寧一中學(xué)高三年級(jí)理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題
(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:平面BCD;
(II)求異面直線(xiàn)AB與CD所成角的大小;
(III)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com