已知函數(shù)f(x)=log2
x
2
×log
2
x
2
,其中x∈[
1
2
,8].
(1)求f(x)的最大值和最小值;
(2)若實數(shù)a滿足:f(x)-a≥0恒成立,求a的取值范圍.
考點(diǎn):對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對數(shù)的運(yùn)算性質(zhì),可將函數(shù)解析式化為函數(shù)f(x)=log22x-3log2x+2,利用換元法結(jié)合二次函數(shù)的圖象和性質(zhì)及x∈[
1
2
,8],可得f(x)的最大值和最小值;
(2)若實數(shù)a滿足f(x)-a≥0恒成立,即a≤f(x)恒成立,則a≤f(x)min,結(jié)合(1)中結(jié)論,可得a的取值范圍.
解答: 解:(1)∵函數(shù)f(x)=log2
x
2
×log
2
x
2
=log22x-3log2x+2,
令t=log2x,由x∈[
1
2
,8]得:t∈[-1,3],
則y=f(x)=t2-3t+2,
∴當(dāng)t=-1時,f(x)取最大值6,
當(dāng)x=
3
2
時,f(x)取最小值-
1
4

(2)若實數(shù)a滿足f(x)-a≥0恒成立,
即a≤f(x)恒成立,
則a≤f(x)min,
由(1)得a≤-
1
4
,
故a的取值范圍為:(-∞,-
1
4
].
點(diǎn)評:本題考查的知識點(diǎn)是對數(shù)函數(shù)的圖象和性質(zhì),恒成立問題,其中熟練掌握對數(shù)函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

水平桌面α上放有4個半徑均為2的球,且相鄰的球都相切(球心的連線構(gòu)成正方形).在這4個球的上面放一個半徑為1的小球,它和下面的4個球恰好相切,則小球的球心到水平桌面α的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、9π-6
B、36π-24
C、12π-6
D、12π-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
6
x
-
5
x2
≥1},集合B={x||x-
(a+1)2
2
|≤
(a-1)2
2
,a∈R},若A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2sin2θ+y2cosθ=1表示橢圓,則θ的取值范圍( 。
A、(2kπ,2kπ+
π
2
)
B、(kπ,kπ+
π
2
)
C、(2kπ,2kπ+
π
6
)
D、(2kπ,2kπ+
π
6
)∪(2kπ+
π
6
,2kπ+
π
2
)k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)乒乓球團(tuán)體比賽的規(guī)則如下:進(jìn)行5場比賽,除第三場為雙打外,其余各場為單打,參賽的每個隊選出3名運(yùn)動員參加比賽,每個隊員打兩場,且第1、2場與第4、5場不能是某個運(yùn)動員連續(xù)比賽.某隊有4名乒乓球運(yùn)動員,其中A不適合雙打,則該隊教練安排運(yùn)動員參加比賽的方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),且f(x+1)•f(x-1)=1,f(x)>0恒成立,則f(2011)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m為常數(shù),函數(shù)f(x)=
m-2x
1+m•2x
為奇函數(shù).
(Ⅰ)求m的值;
(Ⅱ)若m>0,試判斷f(x)的單調(diào)性(不需證明);
(Ⅲ)當(dāng)m>0時,若存在x∈[-2,2],使得f(ex+x-k)+f(2)≤0能成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
3
)(A>0,ω>0)在某一周期內(nèi)的圖象的最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為(
12
,2),(
11π
12
,-2).
(1)求A和ω值;
(2)已知α∈(0,
π
2
),且f(
α
2
)=-
2
3
,求sinα的值.

查看答案和解析>>

同步練習(xí)冊答案