點P(x,y)在不等式組
y-1≥0
x-y+1≥0
x≤a  (a>0)
 表示的平面區(qū)域內,P到原點的距離的最大值為5,則a的值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用點到直線的距離,利用數(shù)形結合即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
由圖象可知當P位于A時,P到原點的距離的最大值為5,
此時
x=a
x-y+1=0
,
解得
x=a
y=1+a
,即A(a,1+a),
此時|OP|=
a2+(a+1)2
=5
,
解得a=3.
故答案為:3.
點評:本題主要考查線性規(guī)劃的應用,利用點到直線的距離公式即可得到結論,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知sin
B+C
2
=sinA•cos
B+C
2
,給出以下四個論斷:
tanC
tanB
=1
②0<sinB+sinC≤
2

③sin2B+sin2C=1
④cos2A+cos2B=sin2C.
其中正確的是
 
(填寫序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={a,b},B={x丨x∈A},則集合A與B的關系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0<x<1時,y=
x+1
x2+2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-2y≤0
y≤x
y≥-x+m
且z=x+2y的最小值為4,則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=-3x2-x+4與坐標軸的交點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a≥b>0時,雙曲線
x2
a2
-
y2
b2
=1的離心率e的取值范圍是( 。
A、(0,
2
2
]
B、[
2
2
,1)
C、(1,
2
]
D、[
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為定義在R上的可導函數(shù),且f(x)<f′(x),對任意x∈R恒成立,則( 。
A、f(2)>e2f(0),f(2012)>e2012f(0)
B、f(2)<e2f(0),f(2012)>e2012f(0)
C、f(2)>e2f(0),f(2012)<e2012f(0)
D、f(2)<e2f(0),f(2012)<e2012f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列中,a1=1,數(shù)列{an+1-3an}是首項為9,公比為3的等比數(shù)列.
(Ⅰ)求a2,a3
(Ⅱ)求數(shù)列{
an
3n
}的前n項和Sn

查看答案和解析>>

同步練習冊答案