在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且滿足sin2(π+B)+sin2C-cos2(
π
2
+A)=sinBsin(π-C)

(Ⅰ)求角A的大。
(Ⅱ)若b=4、c=5,求sinB.
解析:(Ⅰ)∵sin2(π+B)+sin2C-cos2(
π
2
+A)=sinBsin(π-C)
,
∴sin2B+sin2C-sin2A=sinBsinC,(2分)
由正弦定理得b2+c2-a2=bc,由余弦定理得cosA=
b2+c2-a2
2bc
=
1
2
,(4分)
∵0<A<π,∴A=
π
3
.(6分)
(Ⅱ)∵a2=b2+c2-2bccosA=16+25-2×4×5×
1
2
=21
,∴a=
21
,
a
sinA
=
b
sinB
21
sin
π
3
=
4
sinB
,
解得sinB=
2
7
7
.(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C為三個內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2

③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案