已知f(x)=xlnx.

(1)求函數(shù)y=f(x)的圖象在x=e處的切線方程;

(2)設實數(shù)a>0,求函數(shù)y=f(x)在[a,2a]上的最小值;

(3)證明:對一切x∈(0,+∞),都有成立.

答案:
解析:

  解:(1)定義域為   又

  函數(shù)的在處的切線方程為:,即 3分

  (2)當,,單調(diào)遞減,當,,單調(diào)遞增.5分

  (ⅰ)當時,f(x)在單調(diào)遞增, 6分

  (ⅱ)當時, 7分

  (ⅲ)當時,單調(diào)遞減,

   8分

  (3)問題等價于證明,

  由(2)可知的最小值是,當且僅當時取得最小值 10分

  設,則,

  當,單調(diào)遞增;當單調(diào)遞減.故,當且僅當x=1時取得最大值

  所以且等號不同時成立,即

  從而對一切,都有成立 12分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:四川省重點中學敘永一中2008級數(shù)學第一輪復習階段測試卷(不等式)、人教版 人教版 題型:044

已知函數(shù)f(x)=xln(1+x)-a(x+1).

(1)若當x∈[1,+∞]時,(x)x>0恒成立,求a的取值范圍.

(2)求g(x)=(x)-的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省濟寧市2010屆高三第一次模擬考試理科數(shù)學試題 題型:044

已知函數(shù)f(x)=xln(1+x)-a(x+1),其中a為實常數(shù).

(1)當x∈[1,+∞)時,恒成立,求a的取值范圍;

(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省五校2012屆高三第一次聯(lián)考數(shù)學理科試題 題型:044

已知函數(shù)f(x)=ax+xln|x+b|是奇函數(shù),且圖像在點(e,f(e))(e為自然對數(shù)的底數(shù))處的切線斜率為3.

(1)求實數(shù)a、b的值;

(2)若k∈Z,且k<對任意x>1恒成立,求k的最大值;

(3)當n>m>1,(n,m∈Z)時,證明:(mnn)m>(nmm)n

查看答案和解析>>

科目:高中數(shù)學 來源:新課標2012屆高三二輪復習綜合驗收(6)數(shù)學理科試題 題型:044

已知函數(shù)f(x)=xln(1+x)-a(x+1),其中a為常數(shù).

(Ⅰ)當x∈[1,+∞]時,(x)>0恒成立,求a的取值范圍;

(Ⅱ)求g(x)=(x)-的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案