已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為
(1)求雙曲線C的方程;
(2)若直線
與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且
(其中O為原點(diǎn)). 求k的取值范圍.
(Ⅰ)
(Ⅱ
試題分析:(Ⅰ)設(shè)雙曲線方程為
由已知得
故雙曲線C的方程為
.4分
(Ⅱ)將
由直線l與雙曲線交于不同的兩點(diǎn)得
即
① 6分
設(shè)
,則
而
8分
于是
② 10分
由①、②得
故k的取值范圍為
12分
點(diǎn)評(píng):解答雙曲線綜合題時(shí),應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問(wèn)題時(shí)要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長(zhǎng)公式及韋達(dá)定理綜合思考,重視對(duì)稱思想、函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓
過(guò)點(diǎn)
,其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與
軸正半軸、
軸分別交于點(diǎn)
,與橢圓分別交于點(diǎn)
,各點(diǎn)均不重合,且滿足
,
. 當(dāng)
時(shí),試證明直線過(guò)定點(diǎn).過(guò)定點(diǎn)(1,0)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
拋物線
上的一動(dòng)點(diǎn)
到直線
距離的最小值是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知
滿足
,記目標(biāo)函數(shù)
的最大值為7,最小值為1,則
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知拋物線
上一定點(diǎn)B(-1,0)和兩個(gè)動(dòng)點(diǎn)
,當(dāng)
時(shí),點(diǎn)
的橫坐標(biāo)的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線
的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,則此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線
的漸近線與圓
相切,則雙曲線的離心率為( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,已知F
1、F
2分別為橢圓C
1:
的上、下焦點(diǎn),其中F
1也是拋物線C
2:
的焦點(diǎn),點(diǎn)A是曲線C
1,C
2在第二象限的交點(diǎn),且
(Ⅰ)求橢圓
1的方程;
(Ⅱ)已知P是橢圓C
1上的動(dòng)點(diǎn),MN是圓C:
的直徑,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知雙曲線
的左右焦點(diǎn)分別是
,設(shè)
是雙曲線右支上一點(diǎn),
在
上投影的大小恰好為
,且它們的夾角為
,則雙曲線的離心率為( )
查看答案和解析>>