數(shù)列{an}滿足的前n項和Sn=2n-an,n∈N*
(1)計算數(shù)列{an}的前4項;
(2)猜想an的表達式,并證明;
(3)求數(shù)列{n•an}的前n項和Tn
(1)計算得:a1=1,a2=
3
2
,a3=
7
4
,a4=
15
8
.(3分)
(2)∵sn=2n-an當n≥2時
∴sn-1=2(n-1)-an-1兩式相減可得:an=2-an+an-1即:
a n=
1
2
an-1+1
?a n-2=
1
2
(an-1-2)

所以,數(shù)列{an-2}是首項為a1-2=-1公比為
1
2
的等比數(shù)列
a n-2=(-1)•(
1
2
)n-1
?a n=2-(
1
2
)n-1

an=
2n-1
2n-1
(7分)
當n=1時,a1=1,
an=
2n-1
2n-1
,
(3)因為n•an=2n-n•(
1
2
)n-1

設數(shù)列{n•(
1
2
)
n-1
}
的前n項和為MnMn
=1•(
1
2
)0
+2•(
1
2
)1
+3•(
1
2
)2
+n•(
1
2
)n-1
1
2
Mn

=1•(
1
2
)1
+2•(
1
2
)2
+(n-1)•(
1
2
)n-1
+n•(
1
2
)n

兩式相減可得:
1
2
Mn
=(
1
2
)0
+(
1
2
)1
+(
1
2
)2
++(
1
2
)n-1
-n•(
1
2
)n

=
1-(
1
2
)
n-1
1-
1
2
-n•(
1
2
)n
=2-(
1
2
)n
-n•(
1
2
)n

=2-(n+1)•(
1
2
)n
Mn
=4-(n+1)•(
1
2
)n+1
(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)當a=
1
2
時,證明:an
3
2
;
(Ⅲ)設數(shù)列{an-1}的前n項之積為Tn.若對任意正整數(shù)n,總有(an+1)Tn≤6成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足的前n項和Sn=2n-an,n∈N*
(1)計算數(shù)列{an}的前4項;
(2)猜想an的表達式,并證明;
(3)求數(shù)列{n•an}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足b1=1,bn+1=2bn,n∈N.cn=
1
S1+1
+
1
S2+2
+…+
1
Sn+n

(1)求an,bn,cn;
(2)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省泉州一中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

數(shù)列{an}滿足的前n項和Sn=2n-an,n∈N*
(1)計算數(shù)列{an}的前4項;
(2)猜想an的表達式,并證明;
(3)求數(shù)列{n•an}的前n項和Tn

查看答案和解析>>

同步練習冊答案