求函數(shù)f(x)=(sinx+cosx)2+2cos2x的最大值及取得最大值時(shí)x的值.

      

解析:f(x)=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x =1+sin2x+cos2x+1

       =sin2x+cos2x+2

       =sin(2x+)+2,?

       當(dāng)2x+=2kπ+(k∈Z),即x=kπ+(k∈Z)時(shí),?

       f(x)有最大值,最大值為2+.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,記∠BAC=x(角的單位是弧度制),△ABC的面積為S,且
AB
AC
=8,4≤S≤4
3

(1)求x的取值范圍;
(2)就(1)中x的取值范圍,求函數(shù)f(x)=2
3
sin2(x+
π
4
)+2cos2x-
3
的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,記∠BAC=x(角的單位是弧度制),△ABC的面積為S,且
AB
AC
=8,4≤S≤4
3

(1)求x的取值范圍;
(2)就(1)中x的取值范圍,求函數(shù)f(x)=
3
sin2x+cos2x
的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A、B、C的對(duì)邊分別是a,b,c,面積為S△ABC,且
m
=(b2+c2-a2,-2),
n
=(sinA,S△ABC)
m
n

(1)求函數(shù)f(x)=4cosxsin(x-
A
2
)
在區(qū)間[0,
π
2
]上的值域;
(2)若a=3,且sin(B+
π
3
)=
3
3
,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù).

(Ⅰ)若函數(shù)f(x)在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

(Ⅱ)若是函數(shù)f(x)的極值點(diǎn),求函數(shù)f(x)在區(qū)間上的最大值;

(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個(gè)交點(diǎn)?若存在,請(qǐng)求出b的取值范圍;若不存在,試說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx的圖像在x=1,x=2處的切線的斜率分別為0,-2.

(Ⅰ)若c=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)a<b<c時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間是[s,t],求|s-t|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案