已知數(shù)列{an}滿(mǎn)足an+1=(n∈N*),且a1=.

(1)求證:數(shù)列是等差數(shù)列,并求an.

(2)令bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.

 

(1)an= (2)Tn=-.

【解析】(1)因?yàn)閍n+1=,

所以an+1-1=-1=,

==+

=-+,

所以-=-,

所以數(shù)列是公差為-的等差數(shù)列,

而a1=,所以==-,

所以=--(n-1)=-,

所以an-1=-,an=1-=.

(2)由(1)知an=,

所以bn===-,

故Tn=b1+b2+…+bn

=-+-+…+-

=1+--

=-.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題

(2013·江西高考)復(fù)數(shù)z=i(-2-i)(i為虛數(shù)單位)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在(  )

A.第一象限 B.第二象限

C.第三象限 D.第四象限

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:選擇題

(2014·荊門(mén)模擬)若實(shí)數(shù)a,b,c成公差不為0的等差數(shù)列,則下列不等式不成立的是(  )

A.|b-a+|≥2 B.a3b+b3c+c3a≥a4+b4+c4

C.b2>ac D.|b|-|a|≤|c|-|b|

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第八章 平面解析幾何(解析版) 題型:選擇題

(2014·黃岡模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點(diǎn),且過(guò)點(diǎn)D的雙曲線(xiàn)的離心率為e1;以C,D為焦點(diǎn),且過(guò)點(diǎn)A的橢圓的離心率為e2,則e1+e2的取值范圍為(  )

A.[2,+∞) B.(,+∞)

C. D.(+1,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第八章 平面解析幾何(解析版) 題型:選擇題

方程mx2+y2=1所表示的所有可能的曲線(xiàn)是(  )

A.橢圓、雙曲線(xiàn)、圓

B.橢圓、雙曲線(xiàn)、拋物線(xiàn)

C.兩條直線(xiàn)、橢圓、圓、雙曲線(xiàn)

D.兩條直線(xiàn)、橢圓、圓、雙曲線(xiàn)、拋物線(xiàn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第五章 數(shù)列(解析版) 題型:填空題

已知數(shù)列{2n-1·an}的前n項(xiàng)和Sn=9+2n,則數(shù)列{an}的通項(xiàng)公式為an=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第五章 數(shù)列(解析版) 題型:選擇題

(2014·海口模擬)已知{an}為等差數(shù)列,若a1+a5+a9=8π,則cos(a3+a7)的值為(  )

A. B.- C. D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:填空題

若已知函數(shù)f(x)=則f(f(1))+f的值是__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

(2014·成都模擬)如圖,正方形ABCD的邊長(zhǎng)為1,延長(zhǎng)BA至E,使AE=1,連接EC,ED,則sin∠CED=(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案