A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
分析 取BD中點(diǎn)O,連結(jié)PO,AO,則可證明OP⊥平面ABCD,求出OP,OC即可求解直線PC與平面ABCD所成角的正切值.
解答 證明:取BD中點(diǎn)O,連結(jié)PO,AO.
∵△PAB與△PAD都是等邊三角形,
∴設(shè)AB=AD=PB=PD=PA=1.
∴OP⊥BD,OA⊥BD,
又∠BAD=90°,∴OA=OB=OD=$\frac{\sqrt{2}}{2}$,
∴OP=$\sqrt{P{B}^{2}-O{B}^{2}}$=$\frac{\sqrt{2}}{2}$,
∴OA2+OP2=PA2,∴OP⊥OA.
∴OP⊥平面ABCD,又CO?平面ABCD,
∴OP⊥OC.
OC=$\sqrt{O{B}^{2}+B{C}^{2}-2OB•BCcos∠OBC}$=$\sqrt{({\frac{\sqrt{2}}{2})}^{2}+4-2×\frac{\sqrt{2}}{2}×2×\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{10}}{2}$,
直線PC與平面ABCD所成角的正切值為:tan∠POC=$\frac{PO}{OC}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{10}}{2}}$=$\frac{\sqrt{5}}{5}$.
故選:A.
點(diǎn)評(píng) 本題考查直線與平面所成角的求法,考查空間想象能力以及轉(zhuǎn)化思想的應(yīng)用,計(jì)算能力的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\frac{2}{3}\sqrt{3}$ | C. | $\frac{4}{3}\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $\frac{25}{4}$ | C. | $\frac{25}{2}$ | D. | $\frac{13}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x+1 | B. | y=x3 | C. | y=3•2x | D. | y=3-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -12+4$\sqrt{2}$ | B. | -16+4$\sqrt{2}$ | C. | -12+8$\sqrt{2}$ | D. | -16+8$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com