15.在區(qū)間$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一個數(shù)x,則函數(shù)$f(x)=3sin({2x-\frac{π}{6}})$的值不小于0的概率為(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{6}{11}$D.$\frac{7}{12}$

分析 本題是幾何概型的考查,利用區(qū)間長度的比即可求概率.

解答 解:∵函數(shù)$f(x)=3sin({2x-\frac{π}{6}})$,
當$x∈[{-\frac{π}{4},\frac{2π}{3}}]$時,$2x-\frac{π}{6}∈[{-\frac{2π}{3},\frac{7π}{6}}]$,
當$2x-\frac{π}{6}∈[{0,π}]$,即$x∈[{\frac{π}{12},\frac{7π}{12}}]$時,
f(x)≥0,
則所求概率為P=$\frac{{\frac{7π}{12}-\frac{π}{12}}}{{\frac{2π}{3}-({-\frac{π}{4}})}}=\frac{6}{11}$.
故選:C.

點評 本題考查了幾何概型的概率求法;關鍵是正確選擇測度比求概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x+2)=f(x),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x,若在區(qū)間[-1,3]內,函數(shù)g(x)=f(x)-kx-k有四個零點,則實數(shù)k的取值范圍是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)已知cosα+2sinα=-$\sqrt{5}$,求 tanα 的值.
(2)已知tan(π+α)=$\frac{1}{2}$,求$\frac{sin(α-π)cos(α-\frac{π}{2})-co{s}^{2}(-π-α)}{1-sin(-π-α)sin(-\frac{π}{2}+α)+co{s}^{2}(α+π)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在直角梯形ABCD中,AB⊥AD,AB∥CD,PD⊥面ABCD,QC⊥面ABCD,且AB=AD=PD=QC=$\frac{1}{2}$CD,
(1)設直線QB與平面PDB所成角為θ,求sinθ的值;
(2)設M為AD的中點,在PD邊上求一點N,使得MN∥面PBC,求$\frac{DN}{NP}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-t|+$\frac{t}{x}$(x>0);
(1)判斷函數(shù)y=f(x)在區(qū)間(0,t]上的單調性,并證明;
(2)若函數(shù)y=f(x)的最小值為與t無關的常數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.以下關于函數(shù)f(x)=sin2x-cos2x的命題,正確的是( 。
A.函數(shù)f(x)在區(qū)間$(0,\frac{2}{3}π)$上單調遞增
B.直線$x=\frac{π}{8}$是函數(shù)y=f(x)圖象的一條對稱軸
C.點$(\frac{π}{4},0)$是函數(shù)y=f(x)圖象的一個對稱中心
D.將函數(shù)y=f(x)的圖象向左平移$\frac{π}{8}$個單位,可得到$y=\sqrt{2}sin2x$的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+2}&{({x≤-1})}&{\;}\\{2x}&{({-1<x<2})}&{\;}\\{\frac{x^2}{2}}&{({x≥2})}&{\;}\end{array}}\right.$則$f[{f({-\frac{7}{4}})}]$=(  )
A.$\frac{1}{4}$B.-7C.$\frac{1}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列四個說法:
①f(x)=x0與g(x)=1是同一個函數(shù);
②y=f(x),x∈R與y=f(x+1),x∈R可能是同一個函數(shù);
③y=f(x),x∈R與y=f(t),t∈R是同一個函數(shù);
④定義域和值域相同的函數(shù)是同一個函數(shù).
其中正確的個數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)=sinx+cosx,則f($\frac{π}{12}$)的值為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習冊答案