已知數(shù)列滿足:數(shù)列滿足。

(1)若是等差數(shù)列,且的值及的通項(xiàng)公式;

(2)若是等比數(shù)列,求的前項(xiàng)和

(3)當(dāng)是公比為的等比數(shù)列時(shí),能否為等比數(shù)列?若能,求出的值;若不能,請(qǐng)說明理由。

解:(1)是等差數(shù)列,.--- 1分

,                 ………………………3分

解得,                                     …………………………4分

.                               …………………………5分

(2)是等比數(shù)列,,則.…7分

數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

當(dāng);                                           ………………8分

當(dāng)時(shí),.                           ……………10分

(3)數(shù)列不能為等比數(shù)列.                                …………………11分

,      ………13分

假設(shè)數(shù)列能為等比數(shù)列,由,           ………………14分

,此方程無解,

數(shù)列一定不能為等比數(shù)列.                                 ………………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足a1=2,2an=1+anan+1,bn=an-1,bn≠0
(1)求證數(shù)列{
1
bn
}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)令cn=
1
bn 2n
,Tn為數(shù)列{cn}的前n項(xiàng)和,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高三第四次(12月)月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知數(shù)列中,,數(shù)列滿足。

(1)求證:數(shù)列是等差數(shù)列;

(2)求數(shù)列中的最大項(xiàng)和最小項(xiàng),并說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省云浮市高三第五次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分) 已知數(shù)列項(xiàng)和.數(shù)列滿足,數(shù)列滿足

(1)求數(shù)列和數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和;

(3)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知數(shù)列項(xiàng)和.數(shù)列滿足,數(shù)列滿足。(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年廣東省廣州市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)

已知數(shù)列項(xiàng)和.數(shù)列滿足,數(shù)列滿足。

 (1)求數(shù)列和數(shù)列的通項(xiàng)公式;

 (2)求數(shù)列的前項(xiàng)和;

 (3)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案