4.給出下列四個(gè)命題:
①命題“?x∈R,都有x2-x+1≥$\frac{3}{4}$”的否定是“?x∈R,使x2-x+1<$\frac{3}{4}$”
②命題“設(shè)向量$\overrightarrow{a}$=(4sinα,3),$\overrightarrow$=(2,3cosα),若$\overrightarrow{a}$∥$\overrightarrow$,則α=$\frac{π}{4}$的逆命題、否命題、逆否命題中真命題的個(gè)數(shù)為2;
③集合A={x|x2-x=0},B={y|y=-lg(sinx)},C={y|y=$\sqrt{1-{t}^{2}}$}則x∈A是x∈B∩C的充分不必要條件. 
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

分析 寫出原命題的否定,可判斷①;根據(jù)互為逆否的兩個(gè)命題真假性相同,可判斷②;根據(jù)充要條件的定義,可判斷③.

解答 解:①命題“?x∈R,都有x2-x+1≥$\frac{3}{4}$”的否定是“?x∈R,使x2-x+1<$\frac{3}{4}$”,故①正確;
②命題“設(shè)向量$\overrightarrow{a}$=(4sinα,3),$\overrightarrow$=(2,3cosα),
若$\overrightarrow{a}$∥$\overrightarrow$,則6sin2α-6=0,即sin2α=1,
故原命題若$\overrightarrow{a}$∥$\overrightarrow$,則α=$\frac{π}{4}$為假命題,其逆否命題假命題,
其逆命題、否命題為真命題,
故②正確;
③集合A={x|x2-x=0}={0,1},
B={y|y=-lg(sinx)}=[0,+∞),
C={y|y=$\sqrt{1-{t}^{2}}$}=[0,1],
故B∩C=[0,1],
則x∈A是x∈B∩C的充分不必要條件. 故③正確;
故選:D.

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,全稱命題,充要條件,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知下列四個(gè)命題,其中真命題的序號(hào)是(2)(4)(把所有真命題的序號(hào)都填上).
(1)命題“?x∈R,使得x2+x+1>0”的否定是“?x∈R,都有x2+x+1<0”;
(2)命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題;
(3)“f'(x0)=0”是“函數(shù)f(x)在x0處取得極值”的充分不必要條件;
(4)直線$y=\frac{1}{2}x+b$不能作為函數(shù)$f(x)=\frac{1}{e^x}$圖象的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,則|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對(duì)任意實(shí)數(shù)x,若不等式4x-m•2x+2>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.-2$\sqrt{2}$<m<2$\sqrt{2}$B.-2<m<2C.m≤2$\sqrt{2}$D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,且滿足a1+a5=12,S4=20;數(shù)列{bn}滿足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.點(diǎn)A(0,2)是圓x2+y2=16內(nèi)的定點(diǎn),B,C是這個(gè)圓上的兩個(gè)動(dòng)點(diǎn),若BA⊥CA,求BC中點(diǎn)M的軌跡方程,并說明它的軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$|{\overrightarrow a}$|=2,$|{\overrightarrow b}$|=6,則2$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影為(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=ex+ln(x+1)的圖象在(0,f(0))處的切線與直線x-ny+4=0垂直,則n的值為( 。
A.-2B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若雙曲線x2-2y2=K的焦距是6,則K的值是( 。
A.±24B.±6C.24D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案