精英家教網 > 高中數學 > 題目詳情
(2012•朝陽區(qū)二模)高三年級進行模擬考試,某班參加考試的40名同學的成績統計如下:
分數段 (70,90) [90,100) [100,120) [120,150]
人數 5 a 15 b
規(guī)定分數在90分及以上為及格,120分及以上為優(yōu)秀,成績高于85分低于90分的同學為希望生.已知該班希望生有2名.
(Ⅰ)從該班所有學生中任選一名,求其成績及格的概率;
(Ⅱ)當a=11時,從該班所有學生中任選一名,求其成績優(yōu)秀的概率;
(Ⅲ)從分數在(70,90)的5名學生中,任選2名同學參加輔導,求其中恰有1名希望生的概率.
分析:(Ⅰ)用該班學生總人數減去成績低于90分的學生人數,得到成績及格的人數,由成績及格的人數除以總人數得到成績及格的概率;
(Ⅱ)求出當a=11時成績優(yōu)秀的學生數,然后直接利用古典概型概率計算公式求解;
(Ⅲ)把5名學生進行編號,寫出任選2名的所有不同選法種數,查出含有1名希望生的選法種數,然后直接利用古典概型概率計算公式求解.
解答:解:(Ⅰ)設“從該班所有學生中任選一名,其成績及格”為事件A,則P(A)=
40-5
40
=
7
8

答:從該班所有學生中任選一名,其成績及格的概率為
7
8

(Ⅱ)設“從該班所有學生中任選一名,其成績優(yōu)秀”為事件B,則當a=11時,成績優(yōu)秀的學生人數為40-5-11-15=9,所以P(B)=
9
40

答:從該班所有學生中任選一名,其成績優(yōu)秀的概率為
9
40

(Ⅲ)設“從分數在(70,90)的5名學生中,任選2名同學參加輔導,其中恰有1名希望生”為事件C.
記這5名學生分別為a,b,c,d,e,其中希望生為a,b.
從中任選2名,所有可能的情況為:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10種.
其中恰有1名希望生的情況有ac,ad,ae,bc,bd,be,共6種.
所以P(C)=
6
10
=
3
5

答:從分數在(70,90)的5名學生中,任選2名同學參加輔導,其中恰有1名希望生的概率為
3
5
點評:本題考查了古典概型及其概率計算公式,考查了列舉法列舉基本事件個數,關鍵是列舉時做到不重不漏,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•朝陽區(qū)二模)已知函數f(x)=
3
sinxcosx-cos2x+m(m∈R)
的圖象過點M(
π
12
,0).
(1)求m的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若ccosB+bcosC=2acosB,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•朝陽區(qū)二模)設函數f(x)=alnx+
2
a
2
 
x
(a≠0)

(1)已知曲線y=f(x)在點(1,f(1))處的切線l的斜率為2-3a,求實數a的值;
(2)討論函數f(x)的單調性;
(3)在(1)的條件下,求證:對于定義域內的任意一個x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•朝陽區(qū)二模)設集合U={0,1,2,3,4,5},A={1,2},B={x∈Z|x2-5x+4<0},則?U(A∪B)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•朝陽區(qū)二模)若實數x,y滿足
x-y+1≤0
x≤0
則x2+y2的最小值是
1
2
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•朝陽區(qū)二模)已知函數f(x)=
2,x>m
x2+4x+2,x≤m
的圖象與直線y=x恰有三個公共點,則實數m的取值范圍是( 。

查看答案和解析>>

同步練習冊答案