函數(shù)f(x)=cos3x+sin2x-cosx在[0,2π)上的最大值為
 
考點:三角函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用,三角函數(shù)的求值
分析:令cosx=t,由 x∈[0,2π),可得-1≤t≤1,f(x)=g(t)=(1-t2) (1-t),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求得函數(shù)的最值.
解答: 解:函數(shù)f(x)=cos3x+sin2x-cosx=cos3x+1-cos2x-cosx=(1-cos2x)(1-cosx).
令 cosx=t,∵x∈[0,2π),可得-1≤t≤1,f(x)=g(t)=(1-t2)(1-t),
∴g′(t)=3t2-2t-1.
令g′(t)=0,求得t=1,或t=-
1
3

再根據(jù)導(dǎo)數(shù)的符號可得g(t)的增區(qū)間為[-1,-
1
3
],減區(qū)間為(-
1
3
1].
故當(dāng)t=-
1
3
時,函數(shù)g(t)取得最大值為
32
27

故答案為:
32
27
點評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求函數(shù)的最值,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F(xiàn)為棱CE上異于點C、E的動點,則下列說法正確的有( 。
①直線DE與平面ABF平行;
②當(dāng)F為CE的中點時,BF⊥平面CDE;
③存在點F使得直線BF與AC平行;
④存在點F使得DF⊥BC.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,四方形ABCD為正方形,點E,F(xiàn)在圓O上,AD⊥AF,AB=AF=2.
(1)求證:EF∥平面ABCD;
(2)求三棱錐B-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點D作DE⊥AC交AC的延長線于點E,OE交AD于點F.若
AC
AB
=
3
5

(Ⅰ)求證:OD∥AE;
(Ⅱ)求
AF
FD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算 
lim
n→∞
C
2
n
2n2+n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
12
5
,求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-
1
2
,
1
2
]上隨機(jī)取一個數(shù)x,則cosπx的值介于
2
2
3
2
之間的概率為( 。
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-
1
2
ax2-2x
(1)當(dāng)a=0時,求證:f(x)>0恒成立;
(2)記y=f(x)為函數(shù)y=f(x)的導(dǎo)函數(shù),y=f″(x)為函數(shù)y=f′(x)的導(dǎo)函數(shù),對于連續(xù)函數(shù)y=f(x),我們定義:若f″(x0)=0且在x0兩側(cè)f″(x)異號,則點(x0,f(x0))為曲線y=f(x)的拐點,是否存在正實數(shù)a,使得函數(shù)f(x)=ex-
1
2
ax2-2x在其拐點處切線的傾斜角a為
6
,若存在求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,m和n都是實數(shù),且m(1+i)=
3
+m,則(
m+ni
m-ni
2015=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

同步練習(xí)冊答案