P為矩形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,P到B,C,D三點(diǎn)的距離分別是
5
,
17
13
,則P到A點(diǎn)的距離是(  )
分析:由題意畫出圖形,利用題目給出的已知條件得到及格直角三角形,設(shè)出PA的長(zhǎng)度x,然后在直角三角形中利用勾股定理列式求解x的值.
解答:解:如圖,
設(shè)AB=a,BC=b,PA=x.
因?yàn)镻A⊥平面ABCD,所以△PAB,△PAC,△PAD均為Rt△.
又底面為矩形,所以△ABC也為Rt△.
再由PB=
5
,PC=
17
,PD=
13

得:
x2+a2=5
x2+a2+b2=17
x2+b2=13
,解得:x=1.
所以P到A點(diǎn)的距離為1.
故選A.
點(diǎn)評(píng):本題考查了點(diǎn)線面間的距離的計(jì)算,考查了學(xué)生的空間想象能力和計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,點(diǎn)P為矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,E、F分別為AB、PC的中點(diǎn).
求證:(1)CD⊥PD;
(2)EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P為矩形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,E,F(xiàn)分別為線段PB,PC的中點(diǎn),且AD=4,PA=AB=2
(1)求直線EC和面PAD所成的角
(2)求點(diǎn)P到平面AFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為矩形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,P到B,C,D三點(diǎn)的距離分別是
5
,
17
13
,則P到A點(diǎn)的距離是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為矩形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,PB=2
2
,PC=
17
,PD=
13
,則四棱錐P-ABCD的體積等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案