函數(shù)y=f(x)在x=x0處可導(dǎo)是它在x=x0處連續(xù)的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
A
試題分析:可導(dǎo)必定連續(xù),但連續(xù)不一定可導(dǎo),故選A.
考點(diǎn):本題主要考查函數(shù)的導(dǎo)數(shù)與連續(xù)的關(guān)系、充要條件的概念。
點(diǎn)評(píng): 簡(jiǎn)單題,明確可導(dǎo)與連續(xù)的關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的圖象如圖所示,下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪指函數(shù)y=[f(x)]g(x)在求導(dǎo)時(shí),可運(yùn)用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得lny=g(x)•lnf(x),兩邊同時(shí)求導(dǎo)得
y/
y
=g/(x)lnf(x)+g(x)
f/(x)
f(x)
,于是y′=[f(x)]g(x)[g/(x)lnf(x)+g(x)
f/(x)
f(x)
]
,運(yùn)用此方法可以探求得知y=x
1
x
的一個(gè)單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是定義域?yàn)镽 的奇函數(shù),且滿(mǎn)足f(x-2)=-f(x)對(duì)一切x∈R恒成立,當(dāng)

-1≤x≤1時(shí),f(x)=x3。則下列四個(gè)命題:①f(x)是以4為周期的周期函數(shù);②f(x)在[1,3]上的解析式為f(x)=(2-x)3;③f(x)在處的切線(xiàn)方程為3x+4y-5=0;④f(x)的圖像的對(duì)稱(chēng)軸中有x=±1.其中正確的命題是          (    )

       A.① ② ③    B.② ③  ④     C.① ③ ④       D.① ② ③ ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0),f(1)=0.

(1)求y=f(x)的表達(dá)式;

(2)若任意實(shí)數(shù)x都滿(mǎn)足等式f(xg(x)+anx+bn=xn+1g(x)]為多項(xiàng)式,n∈N*),試用t表示anbn

(3)設(shè)圓Cn的方程為(xan)2+(ybn)2=rn2,圓CnCn+1外切(n=1,2,3,…);{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rnSn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽,f(0)=1,對(duì)于任意的實(shí)數(shù)m,n恒有f(m+n)=f(m)·f(n),且當(dāng)x>0時(shí),0<f(x)<1,f(x)在R上的單調(diào)性是

A.f(x)在R上是減函數(shù)                    B.f(x)在R上是增函數(shù)

C.f(x)在R上是奇函數(shù)                    D.f(x)在R上是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案