“a>b>0”是“ab<
a2+b22
”的
充分而不必要條件
充分而不必要條件
(填寫充分而不必要條件、必要而不充分條件、充分必要條件、既不充分也不必要條件)
分析:根據(jù)充分必要條件的定義判斷:若p⇒q,則p是q的充分條件,q是p的必要條件;若p?q,則p是q的充分必要條件.
解答:解:(1)若a>b>0,則ab-
a2+b2
2
=
-(a-b)2
2
<0,
所以ab<
a2+b2
2
,即充分;
(2)若ab<
a2+b2
2
,即ab-
a2+b2
2
=
-(a-b)2
2
<0,
得a≠b,不能推出a>b>0,即不必要.
綜上,“a>b>0”是“ab<
a2+b2
2
”的充分而不必要條件.
故答案為:充分而不必要條件.
點(diǎn)評(píng):本題考查充分條件、必要條件的判斷,屬基礎(chǔ)題,定義是解決該類問題的主要依據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

0<a<1,下列不等式一定成立的是( 。
A、|log(1+a)(1-a)|+|log(1-a)(1+a)|>2;B、|log(1+a)(1-a)|<|log(1-a)(1+a)|;C、|log(1+a)(1-a)+log(1-a)(1+a)|<|log(1+a)(1-a)|+|log(1-a)(1+a)|;D、|log(1+a)(1-a)-log(1-a)(1+a)|>|log(1+a)(1-a)|-|log(1-a)(1+a)|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)對于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)證明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)證明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個(gè)數(shù)中至少有一個(gè)是偶數(shù)
(Ⅲ)設(shè)P⊆Sn,P中有m(m≥2)個(gè)元素,記P中所有兩元素間距離的平均值為
.
d
(P)

證明:
.
d
(P)
mn
2(m-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求
DA
DB
的值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(M,N都不同于點(diǎn)E),且EM⊥EN,求證:直線MN與x軸的交點(diǎn)是一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A、B是長軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足MB⊥AB,聯(lián)結(jié)AM,交橢圓于點(diǎn)P.
(1)當(dāng)a=2,b=
2
時(shí),設(shè)M(2,2),求
OP
OM
的值;
(2)若
OP
OM
為常數(shù),探究a、b滿足的條件?并說明理由;
(3)直接寫出
OP
OM
為常數(shù)的一個(gè)不同于(2)結(jié)論類型的幾何條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:填空題

若實(shí)數(shù)a,b滿足a≥0,b≥0,且ab=0,則稱a與b互補(bǔ),記φ(a,b)=﹣a﹣b,那么
φ(a,b)=0是a與b互補(bǔ)的(    )條件

查看答案和解析>>

同步練習(xí)冊答案