是兩個(gè)不共線的非零向量(t∈R).
(1)若、起點(diǎn)相同,t為何值時(shí),若、t、+)三向量的終點(diǎn)在一直線上?
(2)若||=||且是夾角為60°,那么t為何值時(shí),|﹣t|有最。
 解:(1)設(shè)﹣t=m[+)](m∈R),
化簡得(﹣1)=(﹣t)
不共線,

∴t=時(shí),、t、+)的終點(diǎn)在一直線上.
(2)|﹣t|2=(﹣t2=||2+t2||2﹣2t||||cos60°=(1+t2﹣t)||2,
∴t=時(shí),|﹣t|有最小值||.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州113中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

、是兩個(gè)不共線的非零向量(t∈R).
(1)若、起點(diǎn)相同,t為何值時(shí),若、t、+)三向量的終點(diǎn)在一直線上?
(2)若||=||且是夾角為60°,那么t為何值時(shí),|-t|有最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省馬鞍山市當(dāng)涂二中高一第四次段考數(shù)學(xué)試卷(解析版) 題型:解答題

是兩個(gè)不共線的非零向量(t∈R).
(1)若、起點(diǎn)相同,t為何值時(shí),若、t、+)三向量的終點(diǎn)在一直線上?
(2)若||=||且是夾角為60°,那么t為何值時(shí),|-t|有最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《平面向量》2013年山東省高考數(shù)學(xué)一輪復(fù)習(xí)單元測試(理科)(解析版) 題型:解答題

、是兩個(gè)不共線的非零向量(t∈R).
(1)若、起點(diǎn)相同,t為何值時(shí),若、t、+)三向量的終點(diǎn)在一直線上?
(2)若||=||且是夾角為60°,那么t為何值時(shí),|-t|有最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省天門市岳口高中高考專項(xiàng)復(fù)習(xí):向量(文科)(解析版) 題型:解答題

是兩個(gè)不共線的非零向量(t∈R).
(1)若、起點(diǎn)相同,t為何值時(shí),若、t、+)三向量的終點(diǎn)在一直線上?
(2)若||=||且是夾角為60°,那么t為何值時(shí),|-t|有最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):5.1 向量的概念、向量的加法與減法、實(shí)數(shù)與向量的積(解析版) 題型:解答題

、是兩個(gè)不共線的非零向量(t∈R).
(1)若、起點(diǎn)相同,t為何值時(shí),若、t、+)三向量的終點(diǎn)在一直線上?
(2)若||=||且是夾角為60°,那么t為何值時(shí),|-t|有最?

查看答案和解析>>

同步練習(xí)冊答案