(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請(qǐng)你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過(guò)原點(diǎn),P為概括后命題中曲線上一動(dòng)點(diǎn),借助直線L及動(dòng)點(diǎn)P,請(qǐng)你提出一個(gè)有意義的數(shù)學(xué)問(wèn)題,并予以解決.
(解一):(1)設(shè)直線方程為y=k1x+b,代入橢圓方程并整理得:(1+2k12)x2+4k1bx+2b2-2=0,(2分)
x1+x2=-
4k1b
1+2k2
,又中點(diǎn)M在直線上,所以
y1+y2
2
=k1
x1+x2
2
)+b

從而可得弦中點(diǎn)M的坐標(biāo)為(-
2bk1
1+2k12
,
2b
1+2k12
)
,k2=-
1
2k1
,所以k1k2=-
1
2
.(4分)
(解二)設(shè)點(diǎn)A(x1,y1),B(x2,y2),中點(diǎn)M(x0,y0) 則x0=
x1+x2
2
,y0=
y1+y2
2

K2=
y0
x0
=
y1+y2
x1+x2
k1=
y2-y1
x2-x1
   (2分)
1
2
x12+y12=1
1
2
x22+y22=1
作差得  -
1
2
=
(y2-y1)(y2+y1)
(x2-x1)(x2+x1)

所以 K1K2=-
1
2
            (4分)
(2)對(duì)于橢圓,K1K2=-
b2
a2
  (6分)
已知斜率為K1的直線L交雙曲線
x2
a2
+
y2
b2
=1
(a>0,b>0)于A,B兩點(diǎn),點(diǎn)M 為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)K1、k2都存在).
則k1,k2?的值為
b2
a2
. (8分)
(解一)設(shè)直線方程為y=k1x+d,代入
x2
a2
+
y2
b2
=1
((a>0,b>0)方程并整理得:(b2-a2k12)x2-2k1a2dx-(ad)2-(ab)2=0
1
2
(y1+y2)=
db2
b2-a2k12

所以K2=
y0
x0
=
y1+y2
x1+x2
=
b2
k1a2
,k1=
y2-y1
x2-x1
(2分),即k1k2=
b2
a2
     (10分)
(解二)設(shè)點(diǎn)A(x1,y1),B(x2,y2),中點(diǎn)中點(diǎn)M(x0,y0
x0=
x1+x2
2
y0=
y1+y2
2
,K2=
y0
x0
=
y1+y2
x1+x2
,k1=
y2-y1
x2-x1
(2分)
又因?yàn)辄c(diǎn)A,B在雙曲線上,則
x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1
作差得
a2
b2
=
(y2-y1)(y2+y1)
(x2-x1)(x2+x1
=k1k2    即k1k2=
b2
a2
 (10分)
(3)對(duì)(2)的概括:設(shè)斜率為k1的直線L交二次曲線C:mx2+ny2=1(mn≠0)于A,B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1,k2、都存在),則k1k2=-
m
n
.(12分)
提出問(wèn)題與解決問(wèn)題滿分分別為(3分),提出意義不大的問(wèn)題不得分,解決問(wèn)題的分值不得超過(guò)提出問(wèn)題的分值.
提出的問(wèn)題例如:直線L過(guò)原點(diǎn),P為二次曲線線mx2+ny2=1(mn≠0)上一動(dòng)點(diǎn),設(shè)直線L交曲線于A,B兩點(diǎn),當(dāng)P異于A,B兩點(diǎn)時(shí),如果直線PA,PB的斜率都存在,則它們斜率的積為與點(diǎn)P無(wú)關(guān)的定值.(15分)
解法1:設(shè)直線方程為y=kx,A,B兩點(diǎn)坐標(biāo)分別為(x1,y1)、(-x1,-y1),則y1=kx1
把y=kx代入mx2+ny2=1得(m+nk2)x2=1,
KPA•KPB=
(y0-y1)(y0+y1)
(x0-x1)(x0+x1)
=
y02-y12
x02-x12

所以KPA•KPB=
1-mx02
n
-
k2
m+nk2
x02-
1
m+nk2
=
m-m(m+nk2)x02
n(m+nk2)x02-n
=-
m
n
(18分)
提出的問(wèn)題的例如:直線L:y=x,P為二次曲線mx2+ny2=1(mn≠0)上一動(dòng)點(diǎn),設(shè)直線L交曲線于A,B兩點(diǎn).試問(wèn)使∠APB=30°的點(diǎn)P是否存在?(13分)
問(wèn)題例如:1)直線L過(guò)原點(diǎn),P為二次曲線線mx2+ny2=1(mn≠0)上一動(dòng)點(diǎn),設(shè)直線L交曲線于A,B兩點(diǎn),求PA+PB的值.
2)直線l過(guò)原點(diǎn),P為二次曲線mx2+ny2=1(mn≠0)上一動(dòng)點(diǎn),設(shè)直線L交曲線于A,B兩點(diǎn),求S△PAB的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•楊浦區(qū)二模)(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請(qǐng)你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過(guò)原點(diǎn),P為概括后命題中曲線上一動(dòng)點(diǎn),借助直線L及動(dòng)點(diǎn)P,請(qǐng)你提出一個(gè)有意義的數(shù)學(xué)問(wèn)題,并予以解決.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市楊浦區(qū)、靜安區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)設(shè)斜率為k1的直線L交橢圓C:于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請(qǐng)你給出在雙曲線(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過(guò)原點(diǎn),P為概括后命題中曲線上一動(dòng)點(diǎn),借助直線L及動(dòng)點(diǎn)P,請(qǐng)你提出一個(gè)有意義的數(shù)學(xué)問(wèn)題,并予以解決.

查看答案和解析>>

同步練習(xí)冊(cè)答案