【題目】巳知集合P={},Q={},將P∪Q的所有元素從小到大依次排列構(gòu)成一個數(shù)列{},記為數(shù)列{}的前n項和,則使得<1000成立的的最大值為
A. 9 B. 32 C. 35 D. 61
【答案】C
【解析】
數(shù)列{an}的前n項依次為:1,2,3,22,5,7,23,…….利用分組成等差數(shù)列和等比數(shù)列的前n項和公式求解.
數(shù)列{an}的前n項依次為:1,2,3,22,5,7,23,…….
利用列舉法可得:當n=35時,P∪Q中的所有元素從小到大依次排列,構(gòu)成一個數(shù)列{an},
所以數(shù)列{an}的前35項分別1,3,5,7,9,11,13,15,17,19,21,23,25,
…,69,2,4,8,16,32,64
Sn=29+ +=29+=967<1000
當n=36時,P∪Q中的所有元素從小到大依次排列,構(gòu)成一個數(shù)列{an},
所以數(shù)列{an}的前36項分別1,3,5,7,9,11,13,15,17,19,21,23,25,
…,71,2,4,8,16,32,64
Sn=30++=900+126=1026>1000
所以n的最大值35.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】為緩解堵車現(xiàn)象,解決堵車問題,銀川市交警隊調(diào)查了甲乙兩個路口的車流量,在2019年6月隨機選取了14天,統(tǒng)計每天上午7:30-9:00早高峰時段各自的車流量(單位:百輛)得到如圖所示的莖葉圖,根據(jù)莖葉圖回答以下問題.
(1)甲乙兩個路口的車流量的中位數(shù)分別是多少?
(2)試計算甲乙兩個路口的車流量在之間的頻率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)100個紅包,每個紅包金額為x元,.已知在每輪游戲中所產(chǎn)生的100個紅包金額的頻率分布直方圖如圖所示.
(1)求a的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在[1,2)的紅包個數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2mx+2lnx,m∈R.
(1)探究函數(shù)f(x)的單調(diào)性;
(2)若關(guān)于x的不等式f(x)≤2+3x2在(0,+∞)上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)若a=4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若x1、x2∈R+,且x1≤x2,求證:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)=,其中a>0,且a≠1
(1)判斷的奇偶性,并證明你的結(jié)論;
(2)若關(guān)于的不等式≤||在[﹣1,1]上恒成立,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射擊運動員進行射擊訓練,前三次射擊在靶上的著彈點剛好是邊長為的等邊三角形的三個頂點.
(Ⅰ)第四次射擊時,該運動員瞄準區(qū)域射擊(不會打到外),則此次射擊的著彈點距的距離都超過的概率為多少?(彈孔大小忽略不計)
(Ⅱ) 該運動員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間內(nèi).現(xiàn)從這次射擊成績中隨機抽取兩次射擊的成績(記為和)進行技術(shù)分析.求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地草場出現(xiàn)火災,火勢正以每分鐘的速度順風蔓延,消防站接到警報立即派消防隊員前去,在火災發(fā)生后分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人每分鐘滅火,所消耗的滅火材料、勞務津貼等費用為每人每分鐘元,另附加每次救火所耗損的車輛、器械和裝備等費用平均每人100元,而燒毀一平方米森林損失費為30元.
(1)設派名消防隊員前去救火,用分鐘將火撲滅,試建立與的函數(shù)關(guān)系式;
(2)問應該派多少消防隊員前去救火,才能使總損失最少?(注:總損失費=滅火勞務津貼+車輛、器械裝備費+森林損失費)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,底面,為正方形的對角線,給出下列命題:
①為平面PAD的法向量;
②為平面PAC的法向量;
③為直線AB的方向向量;
④直線BC的方向向量一定是平面PAB的法向量.
其中正確命題的序號是______________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com