正四棱錐所有棱長均為2,則側棱和底面所成的角是


  1. A.
    30°
  2. B.
    45°
  3. C.
    60 °
  4. D.
    90°
B
考點:棱錐的結構特征;與二面角有關的立體幾何綜合題.
專題:數(shù)形結合.
分析:先做出要求的線面角,把它放到一個直角三角形中,利用直角三角形中的邊角關系求出此角.
解答:解析:如圖,四棱錐P-ABCD中,過P作PO⊥平面ABCD于O,連接AO,
則AO是AP在底面ABCD上的射影.∴∠PAO即為所求線面角,
∵AO=,PA=2,
∴cos∠PAO==.∴∠PAO=45°,即所求線面角為45°.
故選 B.
點評:本題考查棱錐的結構特征,以及求直線和平面成的角的方法,體現(xiàn)了數(shù)形結合的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個所有棱長均為1的正四棱錐的頂點與底面的四個頂點均在某個球的球面上,則此球的體積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黔東南州一模)在一個球的球面上有P、A、B、C、D五個點,且P-ABCD是所有棱長均為2的正四棱錐,則這個球的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省雞西市高三上學期期末理科數(shù)學卷 題型:選擇題

正四棱錐所有棱長均為2,則側棱和底面所成的角是  (      )

(A)   30°          (B)  45°         (C)   60 °         (D)   90°

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐所有棱長均為2,則側棱和底面所成的角是          (    )

       A.30 o     B.45 o       C.60 o     D.90 o

查看答案和解析>>

同步練習冊答案