設項數(shù)均為()的數(shù)列、、前項的和分別為、、.已知,且集合=.
(1)已知,求數(shù)列的通項公式;
(2)若,求和的值,并寫出兩對符合題意的數(shù)列、;
(3)對于固定的,求證:符合條件的數(shù)列對(,)有偶數(shù)對.
(1);(2)時,數(shù)列、可以為(不唯一)6,12,16,14;2,8,10,4,時,數(shù)列對(,)不存在.(3)證明見解析.
【解析】
試題分析:(1)這實質是已知數(shù)列的前項和,要求通項公式的問題,利用關系來解決;
(2)注意到,從而,又,故可求出,,這里我們應用了整體思維的思想,而要寫出數(shù)列對(,),可通過列舉法寫出;(3)可通過構造法說明滿足題意和數(shù)列對是成對出現(xiàn)的,即對于數(shù)列對(,),構造新數(shù)列對,(),則數(shù)列對(,)也滿足題意,(要說明的是及=且數(shù)列與,與不相同(用反證法,若相同,則,又,則有均為奇數(shù),矛盾).
試題解析:(1)時,
時,,不適合該式
故, 4分
(2)
又
得,=46,=26 8分
數(shù)列、可以為:
① 16,10,8,12;14,6,2,4 ② 14,6,10,16;12,2,4,8
③ 6,16,14,10;4,12,8,2 ④ 4,14,12,16;2,10,6,8
⑤ 4,12,16,14;2,8,10,6 ⑥ 16,8,12,10;14,4,6,2 10分
(3)令,() 12分
又=,得
=
所以,數(shù)列對(,)與(,)成對出現(xiàn)。 16分
假設數(shù)列與相同,則由及,得,,均為奇數(shù),矛盾!
故,符合條件的數(shù)列對(,)有偶數(shù)對。 18分
考點:(1)數(shù)列的前項和與的關系;(2)整體思想與列舉法;(3)構造法.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年上海市浦東新區(qū)高三上學期期末考試(一模)理科數(shù)學試卷(解析版) 題型:解答題
設項數(shù)均為()的數(shù)列、、前項的和分別為、、.已知集合=.
(1)已知,求數(shù)列的通項公式;
(2)若,試研究和時是否存在符合條件的數(shù)列對(,),并說明理由;
(3)若,對于固定的,求證:符合條件的數(shù)列對(,)有偶數(shù)對.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com