雙曲線的右焦點(diǎn)為F,右頂點(diǎn)為P,點(diǎn)B(0,b),離心率,則雙曲線C是下圖中( )
A.
B.
C.
D.
【答案】分析:根據(jù)雙曲線的離心率,可求得,再一一驗(yàn)證,即可得到結(jié)論.
解答:解:∵離心率,




圖A中,右頂點(diǎn)為P,點(diǎn)B(0,b),∴∠BPO=30°,故A成立;
圖B中,右焦點(diǎn)為F,點(diǎn)B(0,b),故B不成立;
圖C中,過F垂直于x軸的直線交橢圓于點(diǎn)B,則B(c,),tan∠BOF=,故C不成立;
圖D,∵,∴D不成立
故選A.
點(diǎn)評(píng):本題考查的重點(diǎn)是雙曲線的離心率,解題的關(guān)鍵是根據(jù)離心率得到,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右焦點(diǎn)為F(3,0),且以直線x=1為右準(zhǔn)線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•昆明模擬)已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內(nèi)的點(diǎn)P.
(I)求點(diǎn)P的坐標(biāo)及雙曲線E的離心率;
(II)記過點(diǎn)P的漸近線為l1,雙曲線的右焦點(diǎn)為F,過點(diǎn)F且垂直于l1的直線l2與雙曲線E交于A、B兩點(diǎn).若l2與拋物線至多有一個(gè)公共點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右焦點(diǎn)為F,過F作雙曲線一條漸近線的垂線,垂足為A,過A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點(diǎn)),則此雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•昆明模擬)已知雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線C:y=x2+1相切于第一象限內(nèi)的點(diǎn)P.
(I)求點(diǎn)P的坐標(biāo)及雙曲線E的離心率;
(II)記過點(diǎn)P的漸近線為l1,雙曲線的右焦點(diǎn)為F,過點(diǎn)F且垂直于l1的直線l2與雙曲線E交于A、B兩點(diǎn).當(dāng)△PAB的面積為
40
3
時(shí),求雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年內(nèi)蒙古高三第一次模擬考試數(shù)學(xué)理卷 題型:選擇題

已知雙曲線的右焦點(diǎn)為F,P是右支上任意一點(diǎn),以P為圓心,PF長為半徑的圓在右準(zhǔn)線上截得的弦長恰好等于,則的值為(  )                            

A.           B.            C.         D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案