在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”:當(dāng) a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2,函數(shù)f(x)=(1⊕x)•x(其中“•”仍為通常的乘法),則函數(shù)f(x)在[0,2]上的值域?yàn)?/h1>
  1. A.
    [0,4]
  2. B.
    [1,4]
  3. C.
    [0,8]
  4. D.
    [1,8]

C
分析:先求出函數(shù)的解析式,當(dāng)x∈[0,1]時(shí),求得f(x)的范圍,當(dāng)x∈(1,2]時(shí),求得f(x)的范圍,再把f(x)的范圍取并集,即得所求.
解答:根據(jù)題意可得函數(shù)f(x)=(1⊕x)•x=
當(dāng)x∈[0,1]時(shí),f(x)=x∈[0,1].
當(dāng)x∈(1,2]時(shí),f(x)=x3∈(1,8].
綜上可得,函數(shù)f(x)在[0,2]上的值域?yàn)閇0,1]∪(1,8]=[0,8],
故選 C.
點(diǎn)評(píng):本題主要考查利用分段函數(shù)求函數(shù)的值的方法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則中,定義新運(yùn)算a?b=a-2b,則|x?(1-x)|+|(1-x)?x|>3的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2. 則函數(shù)f(x)=(1⊕x)•x-(2⊕x),x∈[-2,2]的最大值等于
6
6
(其中“•”和“-”仍為通常的乘法和減法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”:當(dāng) a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2,函數(shù)f(x)=(1⊕x)•x(其中“•”仍為通常的乘法),則函數(shù)f(x)在[0,2]上的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則下,我們定義新運(yùn)算“⊕”為:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍為通常的乘法和減法)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣東模擬)在實(shí)數(shù)的原有運(yùn)算法則中,定義新運(yùn)算a?b=3a-b,則|x?(4-x)|+|(1-x)?x|>8的解集為
{x|x<-
1
8
,x>
15
8
}
{x|x<-
1
8
,x>
15
8
}

查看答案和解析>>

同步練習(xí)冊(cè)答案