三角形的面積為三角形的邊長,r為三角形內(nèi)切圓的半徑,利用類比推理,可得出四面體的體積為( )
A.
B.
C.(S1,S2,S3,S4分別為四面體的四個面的面積,r為四面體內(nèi)接球的半徑)
D.
【答案】分析:根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.
解答:解:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個面的距離都是r,
根據(jù)三角形的面積的求解方法:分割法,將O與四頂點連起來,可得四面體的體積等于以O(shè)為頂點,分別以四個面為底面的4個三棱錐體積的和,
,
故選C.
點評:類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(或猜想)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆福建晉江季延中學(xué)高二上學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為,直線l的方程為: 

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線l與橢圓相交于、兩點

①若線段中點的橫坐標(biāo)為,求斜率的值;

②已知點,求證:為定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市望子成龍學(xué)校高二(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

已知底面是正三角形,頂點在底面的射影是底面三角形的中心的三棱錐V-ABC的主視圖、俯視圖如圖所示,其中,D為棱CB的中點,則該三棱錐的左視圖的面積為( )

A.9
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖北省孝感高中高三5月數(shù)學(xué)練習(xí)題1(文科)(解析版) 題型:選擇題

已知底面是正三角形,頂點在底面的射影是底面三角形的中心的三棱錐V-ABC的主視圖、俯視圖如圖所示,其中,D為棱CB的中點,則該三棱錐的左視圖的面積為( )

A.9
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢外國語學(xué)校、鐘祥一中高三(下)4月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知底面是正三角形,頂點在底面的射影是底面三角形的中心的三棱錐V-ABC的主視圖、俯視圖如圖所示,其中,D為棱CB的中點,則該三棱錐的左視圖的面積為( )

A.9
B.6
C.
D.

查看答案和解析>>

同步練習(xí)冊答案