定義在R上的偶函數(shù)f(x)對于任意的x∈R都有f(2+x)=-f(2-x),且f(-3)=-2,則f(2009)的值為________.

2
分析:根據(jù)“R上的偶函數(shù)f(x)對于任意的x∈R都有f(2+x)=-f(2-x)”,可求得函數(shù)f(x)的周期,又f(-3)=-2,可求得f(2009)的值.
解答:∵f(2+x)=-f(2-x),f(-x)=f(x),∴f[2+(2+x)]=-f[2-(2+x)]=-f(-x)=-f(x),∴f(8+x)=f(x),∴f(x)是以8為周期的函數(shù);∴f(2009)=f(251×8+1)=f(1)=f(-1)=-f(3)=-f(-3)=2.
故答案為:2.
點評:本題考查函數(shù)奇偶性與周期性的性質(zhì),難點在于確定抽象函數(shù)f(x)的周期,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)是最小正周期為π的周期函數(shù),且當x∈[0,
π
2
]
時,f(x)=sinx,則f(
3
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、定義在R上的偶函數(shù)f(x),當x≥0時有f(2+x)=f(x),且x∈[0,2)時,f(x)=2x-1,則f(2010)+f(-2011)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(x),且f(x)在[-3,-2]上是減函數(shù),若α、β是銳角三角形中兩個不相等的銳角,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個命題:
①f(x)是周期函數(shù);
②f(x)的圖象關于x=l對稱;
③f(x)在[l,2l上是減函數(shù);
④f(2)=f(0),
其中正確命題的序號是
①②④
①②④
.(請把正確命題的序號全部寫出來)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知定義在R上的偶函數(shù)f(x).當x≥0時,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函數(shù)f(x)的解析式并畫出函數(shù)的圖象;
(Ⅱ)寫出函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案