△ABC的三個(gè)頂點(diǎn)A,B,C均在橢圓上,橢圓右焦點(diǎn)F為△ABC的重心,則|AF|+|BF|+|CF|的值為   
【答案】分析:本填空題采用取特殊位置的方法求解,設(shè)點(diǎn)A是橢圓短軸的上端點(diǎn),設(shè)B(x1,y1),C(x2,y2)進(jìn)而根據(jù)橢圓方程求得b和c,進(jìn)而可求得A,F(xiàn)1的坐標(biāo),根據(jù)三角形的重心的性質(zhì)可分別求得x1+x2和y1+y2,把B,C點(diǎn)代入橢圓方程后兩式相減,進(jìn)而求得直線BC的斜率,設(shè)出直線BC的方程,把B,C點(diǎn)坐標(biāo)代入兩式相加求得b,則直線BC方程可得,從而得出B,C的坐標(biāo),最后利用兩點(diǎn)間的距離公式即可求得.
解答:解:設(shè)點(diǎn)A是橢圓短軸的上端點(diǎn),B(x1,y1),C(x2,y2).
橢圓方程得
∴b= a=2
∴c=1,則A(0, ) F(1,0)
=1,x1+x2=3
同理y1+y2=-
又3(x1+x2)+4(y1+y2)×k=0
∴k=,k為BC斜率
令BC直線為:y=x+m
則:y1+y2=(x1+x2)+2m
b=-
∴BC直線為:y=x-代入橢圓的方程求得B(2,-),C(1,-).
利用兩點(diǎn)是的距離公式得:則|AF|+|BF|+|CF|=
故答案為:
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱問(wèn)題、軌跡問(wèn)題等,突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)頂點(diǎn)A、B、C到平面α的距離分別為2 cm、3 cm、4 cm,且它們?cè)讦恋耐瑐?cè),則△ABC的重心到平面α的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+x2-mx
(1)若m=3,求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)m取值范圍;
(3)若m=1,△ABC的三個(gè)頂點(diǎn)A(x1,y1))、B(x2,y2)、C(x3,y3),其中在函數(shù)f(x)的圖象上,試判定△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A(2,1)、B(-2,3)、C(-3,0),求
(1)BC邊所在直線的一般式方程.
(2)BC邊上的高AD所在的直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為
1
3
4
3
1
3
,
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1處取得極值.
(1)求a的值;
(2)若對(duì)0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范圍;
(3)已知△ABC的三個(gè)頂點(diǎn)A,B,C都在函數(shù)f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,討論△ABC是否為鈍角三角形,是否為等腰三角形.并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案