若(x+1)n=a0+a1x+a2x2+…+anxn(x∈N*)且a1+a2=21,則在展開式的各項系數(shù)中,最大值等于______.
由題意可知a1=Cn1,a2=Cn2,所以Cn1+Cn2=21,
n+
n(n-1)
2
=21
?n2+n-42=0,
即(n-6)(n+7)=0,解得n=6,(n=-7舍去).
故展開式各項系數(shù)中最大值為C63=20.
故答案為:20.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(x+1)n=anxn+…+a2x2+a1x+a0(n∈N*),且a1+a2=6,那么n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•杭州二模)若(x+1)n=a0+a1x+a2x2+…+anxn(x∈N*)且a1+a2=21,則在展開式的各項系數(shù)中,最大值等于
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•南京一模)設(shè)(x-1)n=a0+a1x+a2x2+…+anxn(n≥3,且n∈Z).若a3+3a2=0,則的值為
11
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若(x+1)n=a0+a1x+a2x2+…+anxn(x∈N*)且a1+a2=21,則在展開式的各項系數(shù)中,最大值等于________.

查看答案和解析>>

同步練習(xí)冊答案