(2013•江西)在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA-
3
sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
分析:(1)已知等式第一項利用誘導公式化簡,第二項利用單項式乘多項式法則計算,整理后根據(jù)sinA不為0求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(2)由余弦定理列出關系式,變形后將a+c及cosB的值代入表示出b2,根據(jù)a的范圍,利用二次函數(shù)的性質(zhì)求出b2的范圍,即可求出b的范圍.
解答:解:(1)由已知得:-cos(A+B)+cosAcosB-
3
sinAcosB=0,
即sinAsinB-
3
sinAcosB=0,
∵sinA≠0,∴sinB-
3
cosB=0,即tanB=
3
,
又B為三角形的內(nèi)角,
則B=
π
3
;
(2)∵a+c=1,即c=1-a,cosB=
1
2
,
∴由余弦定理得:b2=a2+c2-2ac•cosB,即b2=a2+c2-ac=(a+c)2-3ac=1-3a(1-a)=3(a-
1
2
2+
1
4
,
∵0<a<1,∴
1
4
≤b2<1,
1
2
≤b<1.
點評:此題考查了余弦定理,二次函數(shù)的性質(zhì),誘導公式,以及同角三角函數(shù)間的基本關系,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•江西)如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線l1,l2之間,l∥l1,l與半圓相交于F,G兩點,與三角形ABC兩邊相交于E,D兩點.設弧
FG
的長為x(0<x<π),y=EB+BC+CD,若l從l1平行移動到l2,則函數(shù)y=f(x)的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江西)設
e1
e2
為單位向量.且
e1
、
e2
的夾角為
π
3
,若
a
=
e1
+3
e2
,
b
=2
e1
,則向量
a
b
方向上的射影為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江西)復數(shù)z=i(-2-i)(i為虛數(shù)單位)在復平面內(nèi)所對應的點在( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江西)在△ABC中,角A,B,C的對邊分別為a,b,c,已知sinAsinB+sinBsinC+cos2B=1.
(1)求證:a,b,c成等差數(shù)列;
(2)若C=
3
,求
a
b
的值.

查看答案和解析>>

同步練習冊答案