如圖,正方體中,,點的中點,點上,若,則線段的長度等于______

解析試題分析:因為,所以過得平面與平面相交于.所以.又因為點的中點,點上,所以,點是線段的中點.所以.又因為在正方體中,.,所以.所以.故填.
考點:1.線面平行的性質(zhì).2.三角形的中位線性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,在三棱錐A-BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點,則

(1)當(dāng)AC,BD滿足條件________時,四邊形EFGH為菱形;
(2)當(dāng)AC,BD滿足條件________時,四邊形EFGH是正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在正方體中,過對角線的一個平面交棱于E,交棱于F,則:①四邊形一定是平行四邊形;②四邊形有可能是正方形;③四邊形有可能是菱形;④四邊形有可能垂直于平面.
其中所有正確結(jié)論的序號是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點.給出下列四個結(jié)論:

①存在點,使得//平面;
②存在點,使得平面;
③對于任意的點,平面平面;
④對于任意的點,四棱錐的體積均不變.
其中,所有正確結(jié)論的序號是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

用一個平面去截正方體,有可能截得的是以下平面圖形中的       .(寫出滿足條件的圖形序號)
(1)正三角形 (2)梯形  (3)直角三角形 (4)矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在正方形中,的中點,是側(cè)面內(nèi)的動點且//平面,則與平面所成角的正切值得取值范圍為                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

正三角形的邊長為2,將它沿高翻折,使點與點間的距離為1,此時二面角大小為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,邊長為的等邊三角形的中線與中位線交于點,已知平面)是旋轉(zhuǎn)過程中的一個圖形,有下列命題:

①平面平面;
//平面;
③三棱錐的體積最大值為;
④動點在平面上的射影在線段上;
⑤二面角大小的范圍是.
其中正確的命題是         (寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知平面α,β,γ,直線l,m滿足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.
由上述條件可推出的結(jié)論有________(請將你認為正確的結(jié)論的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案