已知各項均為正數(shù)的數(shù)列滿足,且,其中.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù)m、n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請說明理由。

(Ⅰ)數(shù)列的通項公式為;(Ⅱ)存在,,

解析試題分析:(Ⅰ)求數(shù)列的通項公式,首先須知道數(shù)列的特征,由題意可得,,由于各項均為正數(shù),故有?即,這樣得到數(shù)列是公比為的等比數(shù)列,由可求出,從而可得數(shù)列的通項公式;(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù),使得成等比數(shù)列,首先求出數(shù)列的通項公式,,然后假設(shè)存在正整數(shù),使得成等比數(shù)列,則,整理可得,只要即可,解不等式求出的范圍,看是否有正整數(shù),從而的結(jié)論.
試題解析:(Ⅰ)??因為?即?
?所以有?即
所以數(shù)列是公比為的等比數(shù)列?
?解得
從而,數(shù)列的通項公式為。        6分
(II)=,若成等比數(shù)列,則,

,可得,
所以,解得:
,且,所以,此時
故當且僅當,?使得成等比數(shù)列。        13分
考點:等比數(shù)列的定義,及通項公式,探索性命題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Snn2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

各項均為正數(shù)的等比數(shù)列中,
(Ⅰ)求數(shù)列通項公式;
(Ⅱ)若等差數(shù)列滿足,求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列{}的前n項和為
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項和
(Ⅲ)若,.求不超過的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若是常數(shù),問當滿足什么條件時,函數(shù)有最大值,并求出取最大值時的值;
(2)是否存在實數(shù)對同時滿足條件:(甲)取最大值時的值與取最小值的值相同,(乙)?
(3)把滿足條件(甲)的實數(shù)對的集合記作A,設(shè),求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),設(shè)曲線在點處的切線與軸的交點為,其中為正實數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(3)若數(shù)列的前項和,記數(shù)列的前項和,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的首項,公差.且分別是等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列對任意自然數(shù)均有 成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列的前項和為,
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案