精英家教網 > 高中數學 > 題目詳情

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.

(1)求橢圓C的方程;

(2)求點P的坐標;

(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離d的最小值.

答案:
解析:

  解:(1).  (4分)

  (2)由已知可得點A(-6,0),F(4,0)

  設點P的坐標是,由已知得

  

  由于  (9分)

  (3)點M的坐標是(-1,0),橢圓上的點到點M的距離d有

  由于  (14分)


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點為F1(1,0)、F2(-1,0),離心率為
2
2
,過點A(2,0)的直線l交橢圓C于M、N兩點.
(1)求橢圓C的方程;
(2)①求直線l的斜率k的取值范圍;
②在直線l的斜率k不斷變化過程中,探究∠MF1A和∠NF1F2是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇五校高三下學期期初教學質量調研數學卷(解析版) 題型:解答題

在平面直角坐標系xOy中,如圖,已知橢圓C的上、下頂點分別為AB,點P在橢圓C上且異于點A、B,直線APPB與直線ly=-2分別交于點MN.

(1)設直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;

(2)求線段MN長的最小值;

(3)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省華南師大附中高三(下)5月月考數學試卷(理科)(解析版) 題型:解答題

在平面直角坐標系xOy中,如圖,已知橢圓C:=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省華南師大附中高三(下)5月月考數學試卷(文科)(解析版) 題型:解答題

在平面直角坐標系xOy中,如圖,已知橢圓C:=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當點P運動時,以MN為直徑的圓是否經過某定點?請證明你的結論.

查看答案和解析>>

同步練習冊答案