(本小題滿分12分)已知橢圓)的離心率為,過右焦點且斜率為1的直線交橢圓兩點,為弦的中點。
(1)求直線為坐標原點)的斜率;
(2)設橢圓上任意一點,且,求的最大值和最小值.
(1), (2) 

試題分析:(1)設橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為:     ①   …………2分
易知右焦點F的坐標為(),
據題意有AB所在的直線方程為:  ②      …………4分
由①,②有:        ③
,弦AB的中點,由③及韋達定理有:
 
所以,即為所求。     …………6分
(2)設,由1)中各點的坐標有:
,所以
又點在橢圓C上,所以有整理為。  ④………8分
由③有:。
  ⑤
又A﹑B在橢圓上,故有     ⑥
將⑤,⑥代入④可得:。      …………10分
,故有
所以,     …………12分
點評:圓錐曲線的問題一般來說計算量大,對運算能力要求很高,尋求簡潔、合理的運算途徑很重要,在解答時注意以下的轉化:⑴若直線與圓錐曲線有兩個交點,對待交點坐標是“設而不求”的原則,要注意應用韋達定理處理這類問題 ; ⑵與弦的重點有關問題求解常用方法一韋達定理法 二 點差法;⑶平面向量與解析幾何綜合題,遵循的是平面向量坐標化,應用的是平面向量坐標運算法則還有兩向量平行、垂直來解決問題,這就要求同學們在基本概念、基本方法、基本能力上下功夫.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點不是左、右頂點),且以為直徑的圓經過橢圓C的右頂點A.   求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與雙曲線的漸近線相切,則的值是 _______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線的焦點為F,過拋物線在第一象限部分上一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交于M,若,則點P的坐標為         。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,的重心為G,內心I,且有(其中為實數(shù)),橢圓C的離心率e=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點P(0,-2)的雙曲線C的一個焦點與拋物線的焦點相同,則雙曲線C的標準方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經過點M(2,1),平行于OM的直線軸上的截距為交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

我們把離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設 為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點和右頂點,B是短軸的一個端點,則 (  )
A.60° B.75°C.90°D.120°

查看答案和解析>>

同步練習冊答案