【題目】為了了解居民消費(fèi)情況,某地區(qū)調(diào)查了10000戶小家庭的日常生活平均月消費(fèi)金額,根據(jù)所得數(shù)據(jù)繪制了樣本頻率分布直方圖,如圖所示,每戶小家庭的平均月消費(fèi)金額均不超過9千元,其中第六組第七組第八組尚未繪制完成,但是已知這三組的頻率依次成等差數(shù)列,且第六組戶數(shù)比第七組多500戶,

(1)求第六組第七組第八組的戶數(shù),并補(bǔ)畫圖中所缺三組的直方圖;

(2)若定義月消費(fèi)在3千元以下的小家庭為4類家庭,定義月消費(fèi)在3千元至6千無的小家庭為B類家庭,定義月消費(fèi)6千元以上的小家庭為C類家庭,現(xiàn)從這10000戶家庭中按分層抽樣的方法抽取80戶家庭召開座談會,間A,B,C各層抽取的戶數(shù)分別是多少?

【答案】(1)第六八組的戶數(shù)分別是:15001000500戶,直方圖見解析;(2)A,B,C三類家庭分別抽取的戶數(shù)分別是184814.

【解析】

1)設(shè)第六八組的戶數(shù)分別是x,y,z,再通過已知求出它們即得解,再求出第六八組的小矩形高度,補(bǔ)充完整頻率分布直方圖;(2)求出A類家庭的頻率之和、B類家庭的頻率之和、C類家庭的頻率之和,即得解.

(1)設(shè)第六八組的戶數(shù)分別是xy,z

它們的頻率之和為:,

所以這三組的戶數(shù)之和為:.

由于這三組的頻率依次成等差數(shù)列,所以x,yz也成等差數(shù)列,

,,解得:,,.

所以第六八組的小矩形高度分別為:,.

補(bǔ)直方圖(需注明第七組的小矩形高度為0.10,第六八兩組分別用虛線對應(yīng)0.150.05.)

(2)A類家庭的頻率之和為:;

B類家庭的頻率之和為:;

C類家庭的頻率之和為:.

A,B,C類家庭分別抽取的戶數(shù)分別為:,.

:(1)第六八組的戶數(shù)分別是:15001000500戶;

(2)A,BC三類家庭分別抽取的戶數(shù)分別是184814.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南通風(fēng)箏是江蘇傳統(tǒng)手工藝品之一.現(xiàn)用一張長2 m,寬1.5 m的長方形牛皮紙ABCD裁剪風(fēng)箏面,裁剪方法如下:分別在邊AB,AD上取點(diǎn)E,F,將三角形AEF沿直線EF翻折到處,點(diǎn)落在牛皮紙上,沿,裁剪并展開,得到風(fēng)箏面,如圖1.

(1)若點(diǎn)E恰好與點(diǎn)B重合,且點(diǎn)BD上,如圖2,求風(fēng)箏面的面積;

(2)當(dāng)風(fēng)箏面的面積為時(shí),求點(diǎn)AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次高三年級統(tǒng)一考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,計(jì)劃從900名考生的選做題成績中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績按照隨機(jī)順序依次編號為001一900.

(1)若采用隨機(jī)數(shù)表法抽樣,并按照以下隨機(jī)數(shù)表,以方框內(nèi)的數(shù)字5為起點(diǎn),從左向右依次讀取數(shù)據(jù),每次讀取三位隨機(jī)數(shù),一行讀數(shù)用完之后接下一行左端.寫出樣本編號的中位數(shù);

(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號為08,求樣本中所有編號之和:

(3)若采用分層軸樣,按照學(xué)生選擇題目或題目,將成績分為兩層,且樣本中題目的成績有8個(gè),平均數(shù)為7,方差為4:樣本中題目的成績有2個(gè),平均數(shù)為8,方差為1.用樣本估計(jì)900名考生選做題得分的平均數(shù)與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時(shí),.若對于任意,都有,則實(shí)數(shù)的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng)為何值時(shí),銷售額最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,四邊形為矩形,,,.

(1)求證:平面;

(2)設(shè),求平面與平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)A是拋物線上到直線的距離最短的點(diǎn),點(diǎn)B是拋物線上異于點(diǎn)A的一點(diǎn),直線ABl交于P,過點(diǎn)Py軸的平行線交拋物線于點(diǎn)C.

(1)求點(diǎn)A的坐標(biāo);

(2)求證:直線BC過定點(diǎn);

(3)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的極小值為1.

(1)求a的值;

(2)當(dāng)時(shí),對任意,有成立,求整數(shù)b的最大值。

查看答案和解析>>

同步練習(xí)冊答案