分析:(1)再寫(xiě)一式,兩式相減,可得an-an-1=2,從而可求數(shù)列的通項(xiàng)公式;
(2)確定數(shù)列的通項(xiàng),利用錯(cuò)位相減法,可求數(shù)列{bn}的前n項(xiàng)和;
(3)先用數(shù)學(xué)歸納法證明當(dāng)n≥3時(shí),3n-1>2n,然后用錯(cuò)位相減法計(jì)算,可得結(jié)論.
解答:(1)解:∵S
n=
+an-,
Sn-1=an-12+an-1-,
∴
an=Sn-Sn-1=(an2-an-12)+(an-an-1)∵正項(xiàng)數(shù)列{a
n},∴a
n-a
n-1=2,
∵S
1=
+a1-,
∴a
1=3,∴a
n=2n+1;
(2)解:∵
an=2nbn,∴b
n=
∴
Tn=++…+①
∴
Tn=++…+②
①-②整理可得
Tn=5-(2n+5);
(3)證明:①當(dāng)n=3時(shí),3
3-1>2•3;
②設(shè)n=k(k≥3)時(shí),3
k-1>2k,則n=k+1時(shí),3
k=3•3
k-1>6k>2(k+1)
∴n=k+1時(shí),結(jié)論成立,
∴3
n-1>2n,即
<所以
++…+<++…+令S
n′=
++…+,則
Sn′=++…+兩式相減可得
Sn′=
++…+-=
-∴
Sn′=-∴
++…+<∵
=∴
+++…+<得證.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查數(shù)列與不等式的聯(lián)系,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.