【題目】對于兩個定義域相同的函數(shù)、,若存在實數(shù),,使則稱函數(shù)是由“基函數(shù)”生成的.
(1)若和生成一個偶函數(shù),求的值;
(2)若是由和生成,其中,.且求的取值范圍;
(3)利用“基函數(shù),”生成一個函數(shù),使得滿足:
①是偶函數(shù),②有最小值,求的解析式.
【答案】(1);(2)的取值范圍為;
(3)
【解析】
(1)先用待定系數(shù)法表示出偶函數(shù),再根據(jù)其是偶函數(shù)這一性質(zhì)得到引入?yún)?shù)方程,求出參數(shù)的值,即得函數(shù)的解析式,代入自變量求值即可.
(2)設,展開后整理,利用待定系數(shù)法找到的關系,由系數(shù)相等把用表示,然后結合的范圍求解的取值范圍.
(3)設,是偶函數(shù),則,可得與的關系,有最小值則必有,且有,求出和的值,可得解析式.
(1)和生成一個偶函數(shù),
則,
,
,
故得,.
(2)設,
,,
則,
所以,
,.且,
的取值范圍為.
(3)設,
是偶函數(shù),
,
即,
,可得:,
則
,
有最小值,則必有,且有,
,
故得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是偶函數(shù),求的值;
(2)設函數(shù),當時,有且只有一個實數(shù)根,求的取值范圍;
(3)若關于的方程在區(qū)間上有兩個不相等的實數(shù)根,,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)判斷的單調(diào)性,并證明之;
(2)若存在實數(shù),,使得函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;
用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率與雙曲線的離心率互為倒數(shù),分別為橢圓的左、右頂點,且.
(1)求橢圓的方程;
(2)已知過左頂點的直線與橢圓另交于點,與軸交于點,在平面內(nèi)是否存在一定點,使得恒成立?若存在,求出該點的坐標,并求面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的右焦點為F,點A(一2,2)為橢圓C內(nèi)一點。若橢圓C上存在一點P,使得|PA|+|PF|=8,則m的取值范圍是( ).
A. B. [9,25] C. D. [3,5]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜好體育運動是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | |
男生 | 5 | |
女生 | 10 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯概率不超過0.01的前提下認為喜好體育運動與性別有關?說明你的理由;
(3)在上述喜好體育運動的6人中隨機抽取兩人,求恰好抽到一男一女的概率.
參考公式:.
獨立性檢驗臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com