如圖,設P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,∠POM=數(shù)學公式,∠PON=α,α∈[0,π)
(1)求點M的坐標;
(2)設f(α)=數(shù)學公式數(shù)學公式,求f(α)的取值范圍.

(1)解:設M(x,y),根據(jù)三角函數(shù)的定義得,
x=cos=,y=sin,∴M().
(2)N是單位圓上的點,∠PON=α,α∈[0,π),所以N(cosα,sinα),
,=(cosα,sinα).
∴f(α)===cos(
因為α∈[0,π),∴,∴<cos()≤1,
f(α)的取值范圍是(].
分析:(1)設出M坐標利用三角函數(shù)的定義直接求出M即可.
(2)由題意推出N利用f(α)=,求出函數(shù)的表達式,結合角的范圍,求出函數(shù)的取值范圍.
點評:本題考查三角函數(shù)的定義,向量的數(shù)量積,三角函數(shù)的化簡求值,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,設P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,∠POM=
π
3
,∠PON=α,α∈[0,π),f(α)=
OM
ON
,則f(a)的范圍為( 。
A、(-
1
2
,1]
B、[-
1
2
,
1
2
)
C、[-
1
2
,1)
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,設P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,∠POM=
π
3
,∠PON=α,α∈[0,π],f(α)=|
OM
+
ON
|
,則f(a)的范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,∠POM=
π
3
,∠PON=α,α∈[0,π)
(1)求點M的坐標;
(2)設f(α)=
OM
ON
,求f(α)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市閔行區(qū)高考數(shù)學三模試卷(文理合卷)(解析版) 題型:解答題

如圖,設P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,,∠PON=α,α∈[0,π],,則f(a)的范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市閔行區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

如圖,設P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標原點,,∠PON=α,α∈[0,π],,則f(a)的范圍為   

查看答案和解析>>

同步練習冊答案