1.已知函數(shù)f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,是定義在R上的奇函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的值域.

分析 (Ⅰ)根據(jù)函數(shù)的奇偶性求出a,b的值,從而求出f(x)的解析式;(Ⅱ)將f(x)的解析式變形,求出函數(shù)f(x)的值域即可.

解答 解:(Ⅰ)f(x)在R上的奇函數(shù),f(0)=0,得b=-1,
∴f(x)=$\frac{{2}^{x}-1}{{2}^{x}+a}$,
又∵f(-x)=-f(x),
∴$\frac{{2}^{-x}-1}{{2}^{-x}+a}$=-$\frac{{2}^{x}-1}{{2}^{x}+a}$,化簡得,$\frac{{2}^{x}-1}{a{•2}^{x}+1}$=$\frac{{2}^{x}-1}{{2}^{x}+a}$,
∴a=1,∴f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$;
(Ⅱ)f(x)=1-$\frac{2}{{2}^{x}+1}$,求得:-1<f(x)<1,
∴函數(shù)值域為(-1,1).

點(diǎn)評 本題考查了函數(shù)的奇偶性問題,考查求函數(shù)的值域問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)=\frac{1}{{\sqrt{4-x}}}$的定義域是( 。
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過A(0,1)、B(2,-1)兩點(diǎn)的面積最小的圓的方程為(  )
A.(x-1)2+y2=2B.(x-1)2+(y+1)2=5C.(x+1)2+(y-1)2=1D.(x+1)2+(y+2)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是R上的奇函數(shù),且對任意實數(shù)x滿足f(x)+f(x+$\frac{3}{2}$)=0,若f(1)>1,f(2)=a,則實數(shù)a的取值范圍是a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)動點(diǎn)P在y軸與直線l:x=8之間的區(qū)域(含邊界)上運(yùn)動,且到點(diǎn)F(2,0)和直線l的距離之和為10,設(shè)動點(diǎn)P的軌跡為曲線C,過點(diǎn)S(2,4)作兩條直線SA、SB分別交曲線C于A、B兩點(diǎn),斜率分別為k1、k2
(1)求曲線C的方程;
(2)若k1•k2=1,求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,0),B(4,0),若直線x-y+m=0上存在點(diǎn)P,使得2PA=PB,則實數(shù)m的取值范圍是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象經(jīng)過點(diǎn)(3,8),則f(1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{x+1}$.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若x>0且x≠1,f(x)-$\frac{t}{x}>\frac{lnx}{x-1}$.
(i)求實數(shù)t的最大值;
(ii)證明不等式:lnn<$\sum_{i=1}^n{(\frac{1}{i})}-\frac{1}{2}-\frac{1}{2n}$(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,單位長度一致建立平面直角坐標(biāo)系,曲線C:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l:極坐標(biāo)方程為ρsin(θ-$\frac{π}{3}$)=1.
(Ⅰ)求曲線C的普通方程,直線l的直角坐標(biāo)方程;
(Ⅱ)求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案