數(shù)列的前n項(xiàng)之和(k≠1),判斷數(shù)列是否是等比數(shù)列.

答案:略
解析:

解:n2時(shí),,

k0時(shí),數(shù)列是等比列數(shù);

當(dāng)k=0時(shí),則,數(shù)列1,0,0,…不是等比數(shù)列.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan} 為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項(xiàng)公式an=n2+n(n∈N*),則以下結(jié)論正確的序號(hào)為
①④
①④

①△an=2n+2;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項(xiàng)之和為an=n2+n;   
④{△2an}的前2014項(xiàng)之和為4028.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中kan=k-1an+1-k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項(xiàng)公式an=n2+n(n∈N*),則以下結(jié)論正確的序號(hào)為
①④
①④

①△an=2n+24;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項(xiàng)之和為an=n2+n;   
④{△2an}的前2014項(xiàng)之和為4028.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東坡區(qū)一模)已知數(shù)列{an}中,a1=6,an+1=an+1,數(shù)列{bn},點(diǎn)(n,bn)在過點(diǎn)A(0,1)的直線l上,若l上有兩點(diǎn)B、C,向量
BC
=(1,2).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=2 bn,在ak與ak+1之間插入k個(gè)ck,依次構(gòu)成新數(shù)列,試求該數(shù)列的前2013項(xiàng)之和;
(3)對(duì)任意正整數(shù)n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

數(shù)列的前n項(xiàng)之和(k1),判斷數(shù)列是否是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案