已知函數(shù)f(x)滿足f(x)=x3+f ′(
2
3
)x2-x+C
(其中f ′(
2
3
)
為f(x)在點(diǎn)x=
2
3
處的導(dǎo)數(shù),C為常數(shù)).
(1)求f ′(
2
3
)
的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
分析:(1)由f(x)=x3+f ′(
2
3
)x2-x+C
,得f ′(x)=3x2+2f ′(
2
3
)x-1
.由此能求出f ′(
2
3
)
的值.
(2)由f(x)=x3-x2-x+C.知f ′(x)=3x2-2x-1=3(x+
1
3
)(x-1)
,列表討論能求出f(x)的單調(diào)區(qū)間.
解答:解:(1)由f(x)=x3+f ′(
2
3
)x2-x+C
,得f ′(x)=3x2+2f ′(
2
3
)x-1

x=
2
3
,得f ′(
2
3
)=3×(
2
3
)2+2f ′(
2
3
)×(
2
3
)-1

解之,得f ′(
2
3
)=-1
,…(6分)
(2)因?yàn)閒(x)=x3-x2-x+C.
從而f ′(x)=3x2-2x-1=3(x+
1
3
)(x-1)
,列表如下:
x (-∞,-
1
3
)
-
1
3
(-
1
3
,1)
1 (1,+∞)
f'(x) + 0 - 0 +
f(x) 有極大值 有極小值
∴f(x)的單調(diào)遞增區(qū)間是(-∞ , -
1
3
)
,(1,+∞);
f(x)的單調(diào)遞減區(qū)間是(-
1
3
 , 1)
.…(12分)
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)值的求法,考查函數(shù)的單調(diào)區(qū)間的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時(shí),f(x)=f(x-1);當(dāng)x<1時(shí),f(x)=2x,則f(log27)=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案