設(shè)f(x)是定義在R上的偶函數(shù),對(duì)于任意的x∈R,都有f(x-2)=f(2+x),且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)
x
-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-logax+2=0恰有3個(gè)不同的實(shí)數(shù)解,則a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.(1,
34
D.(
34
,2)
∵對(duì)于任意的x∈R,都有f(x-2)=f(2+x),
∴函數(shù)f(x)是一個(gè)周期函數(shù),且T=4
又∵當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
)
x
-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
故函數(shù)f(x)在區(qū)間(-2,6]上的圖象如下圖所示:

精英家教網(wǎng)

若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-logax+2=0恰有3個(gè)不同的實(shí)數(shù)解
則loga4<3,loga8>3,
解得:
34
<a<2
故選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x-1,則f(-1)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時(shí),有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時(shí),f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時(shí)的解析式為(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習(xí)冊(cè)答案